A multiplicity theorem for the Neumann p-Laplacian with an asymmetric nonsmooth potential

被引:20
作者
Barletta, Giuseppina [1 ]
Papageorgiou, Nikolaos S.
机构
[1] Univ Reggio Calabria, Dipartimento Patrimonio Architetton & Urbanist, Fac Architettura, I-89124 Reggio Di Calabria, Italy
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词
Neumann problem; p-Laplacian; degree theory; local minimizer; lagrange multiplier rule; nonsmooth potential;
D O I
10.1007/s10898-007-9142-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a nonlinear Neumann problem driven by the p-Laplacian differential operator with a nonsmooth potential (hemivariational inequality). By combining variational with degree theoretic techniques, we prove a multiplicity theorem. In the process, we also prove a result of independent interest relating W-n(1,p) and C-n(1) local minimizers, of a nonsmooth locally Lipschitz functional.
引用
收藏
页码:365 / 392
页数:28
相关论文
共 30 条
[1]  
Adams R., 1975, Sobolev Spaces
[2]  
AIZICOVICI S, IN PRESS MEMOIRS AMS
[3]  
Anane A., 1996, PITMAN RES NOTES MAT, V343, P1
[4]   Existence of infinitely many weak solutions for a Neumann problem [J].
Anello, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (02) :199-209
[5]  
[Anonymous], 1986, NONLINEAR ELLIPTIC B
[6]   Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations [J].
Azorero, JPG ;
Alonso, IP ;
Manfredi, JJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) :385-404
[7]   Existence of multiple solutions of critical quasilinear elliptic Neumann problems [J].
Binding, PA ;
Drábek, P ;
Huang, YX .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (04) :613-629
[8]   Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian [J].
Bonanno, G ;
Candito, P .
ARCHIV DER MATHEMATIK, 2003, 80 (04) :424-429
[9]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[10]   FIXED-POINT THEORY AND NON-LINEAR PROBLEMS [J].
BROWDER, FE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (01) :1-39