Separable deformations of the generalized quaternion group algebras

被引:1
作者
Ginosar, Yuval [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
关键词
MASCHKES-THEOREM; MODULAR VERSION;
D O I
10.1515/jgth-2019-0042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The group algebras kQ(2n) of the generalized quaternion groups Q(2n) over fields k which contain F2n-2 are deformed to separable k((t))-algebras [kQ(2n)](t). The dimensions of the simple components of <(k((t)))over bar> circle times(k((t))) [kQ(2n)](t) over the algebraic closure <(k((t)))over bar>, and those of CQ(2n) over C are the same, yielding strong solutions of the Donald-Flanigan conjecture for the generalized quaternion groups.
引用
收藏
页码:179 / 191
页数:13
相关论文
共 13 条
[1]   A separable deformation of the quaternion group algebra [J].
Barnea, Nurit ;
Ginosar, Yuval .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (08) :2675-2681
[2]   DEFORMATION-THEORETIC VERSION OF MASCHKES-THEOREM FOR MODULAR GROUP ALGEBRAS - COMMUTATIVE CASE [J].
DONALD, JD ;
FLANIGAN, FJ .
JOURNAL OF ALGEBRA, 1974, 29 (01) :98-102
[3]   ON SEMISIMPLE DEFORMATIONS OF LOCAL SEMIDIHEDRAL ALGEBRAS [J].
ERDMANN, K .
ARCHIV DER MATHEMATIK, 1994, 63 (06) :481-487
[4]  
Erdmann K., 1993, Proceedings of the Conference on Quantum Deformations of Algebras and their Representations, V7, P25
[5]   The modular version of Maschke's theorem for normal abelian p-Sylows [J].
Gerstenhaber, M ;
Schaps, ME .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1996, 108 (03) :257-264
[6]   Hecke algebras, U(q)sl(n), and the Donald-Flanigan conjecture for S-n [J].
Gerstenhaber, M ;
Schaps, ME .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (08) :3353-3371
[7]   The Donald-Flanigan problem for finite reflection groups -: To the memory of Moshe!Flato z"l [J].
Gerstenhaber, M ;
Giaquinto, A ;
Schaps, ME .
LETTERS IN MATHEMATICAL PHYSICS, 2001, 56 (01) :41-72
[8]  
Gerstenhaber M., 1998, Contemporary mathematics, V229, P159
[9]  
Herstein IN., 1968, NONCOMMUTATIVE RINGS
[10]  
McConnell JC, 1987, PURE APPL MATH