Thermal Conductivity of β-Ga2O3 Thin Films Grown by Molecular Beam Epitaxy

被引:0
作者
Vaca, Diego [1 ]
Yates, Luke [1 ]
Nepal, Neeraj [2 ]
Katzer, D. Scott [2 ]
Downey, Brian P. [2 ]
Wheeler, Virginia [2 ]
Meyer, David J. [2 ]
Graham, Samuel [1 ,3 ]
Kumar, Satish [1 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, 801 Ferst Dr, Atlanta, GA 30332 USA
[2] US Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA
[3] Georgia Inst Technol, Sch Mat Sci & Engn, 801 Ferst Dr, Atlanta, GA 30332 USA
来源
PROCEEDINGS OF THE NINETEENTH INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM 2020) | 2020年
关键词
Gallium Oxide; Thermal Boundary Conductance; Molecular Beam Epitaxy; Time Domain Thermoreflectance; HEAT-CAPACITY;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
beta-Ga2O3 is considered as a promising material for future power electronic applications. In this work, we used time-domain thermoreflectance to measure the thermal conductivity and thermal boundary conductance (TBC) of thin films of beta-Ga2O3 grown using molecular beam epitaxy (MBE) on c-Al2O3 (sapphire) and 4H-SiC substrates. One sample was 119 nm thick on sapphire, while the other sample was 81 nm thick on 4H-SiC. The Ga2O3 layer on c-sapphire presented a through-plane thermal conductivity of 3.2 +/- 0.3 W/m-K with a Ga2O3/sapphire TBC of 155.6 +/- 65.3 MW/m(2)-K. The thermal conductivity of the Ga2O3 layer on 4H-SiC was measured as 3.1 +/- 0.5 W/m-K with a Ga2O3/SiC TBC of 141.8 +/- 63.8 MW/m(2)-K. When compared with the thermal conductivity of films grown using pulsed-laser deposition from a previous study, thermal conductivity of layers grown by MBE show higher values, which suggests that the films grown by epitaxial method such as MBE can improve the thermal conductivity of thin films.
引用
收藏
页码:1011 / 1016
页数:6
相关论文
共 24 条
[1]   LOW TEMPERATURE HEAT CAPACITIES OF INORGANIC SOLIDS .11. THE HEAT CAPACITY OF BETA-GALLIUM OXIDE FROM 15 TO 300-DEGREES-K [J].
ADAMS, GB ;
JOHNSTON, HL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1952, 74 (19) :4788-4789
[2]  
[Anonymous], 2002, Fundamentals of Microfabrication: The Science of Miniaturization
[3]  
Auerkari P., 1996, Mechanical and Physical Properties of Engineering Alumina Ceramics
[4]   POWER SEMICONDUCTOR-DEVICE FIGURE OF MERIT FOR HIGH-FREQUENCY APPLICATIONS [J].
BALIGA, BJ .
IEEE ELECTRON DEVICE LETTERS, 1989, 10 (10) :455-457
[5]  
Bar-Cohen A., 2011, 2011 IEEE CSICS, DOI [10.1109/csics.2011.6062454, DOI 10.1109/CSICS.2011.6062454]
[6]  
Blumenschein N., 1933, INT SOC OPTICS PHOTO, V10533, p105332G
[7]   THERMAL-CONDUCTIVITY AND ELECTRICAL-PROPERTIES OF 6H SILICON-CARBIDE [J].
BURGEMEISTER, EA ;
VONMUENCH, W ;
PETTENPAUL, E .
JOURNAL OF APPLIED PHYSICS, 1979, 50 (09) :5790-5794
[8]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[9]   Thermal conductance across β-Ga2O3-diamond van der Waals heterogeneous interfaces [J].
Cheng, Zhe ;
Yates, Luke ;
Shi, Jingjing ;
Tadjer, Marko J. ;
Hobart, Karl D. ;
Graham, Samuel .
APL MATERIALS, 2019, 7 (03)
[10]   ENTHALPY AND HEAT-CAPACITY STANDARD REFERENCE MATERIAL - SYNTHETIC SAPPHIRE (ALPHA-AL2O3) FROM 10 TO 2250 K [J].
DITMARS, DA ;
ISHIHARA, S ;
CHANG, SS ;
BERNSTEIN, G ;
WEST, ED .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1982, 87 (02) :159-163