Quaternion-Based Knowledge Graph Network for Recommendation

被引:21
|
作者
Li, Zhaopeng [1 ,2 ]
Xu, Qianqian [3 ]
Jiang, Yangbangyan [1 ,2 ]
Cao, Xiaochun [1 ,2 ,6 ]
Huang, Qingming [3 ,4 ,5 ,6 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
[5] Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R China
[6] Peng Cheng Lab, Shenzhen, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金; 国家重点研发计划;
关键词
Recommendation; Quaternion Embedding; Knowledge Graph;
D O I
10.1145/3394171.3413992
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, to alleviate the data sparsity and cold start problem, many research efforts have been devoted to the usage of knowledge graph (KG) in recommender systems. It is common for most existing KG based models to represent users and items using real-valued embeddings. However, compared with complex or hypercomplex numbers, these real-valued vectors are of less representation capacity and no intrinsic asymmetrical properties, thus may limit the modeling of interactions between entities and relations in KG. In this paper, we propose Quaternion-based Knowledge Graph Network (QKGN) for recommendation, which represents users and items with quaternion embeddings in hypercomplex space, so that the latent inter-dependencies between entities and relations could be captured effectively. In the core of our model, a semantic matching principle based on Hamilton product is applied to learn expressive quaternion representations from the unified user-item KG. On top of this, those embeddings are attentively updated by a customized preference propagation mechanism with structure information concerned. Finally, we apply the proposed QKGN to three real-world datasets of music, movie and book, and experimental results show the validity of our method.
引用
收藏
页码:880 / 888
页数:9
相关论文
共 50 条
  • [1] Quaternion-based knowledge graph neural network for social recommendation
    Wang, Chenyu
    Li, Lingxiao
    Zhang, Haiyang
    Li, Dun
    KNOWLEDGE-BASED SYSTEMS, 2022, 257
  • [2] Quaternion-based graph convolution network for recommendation
    Fang, Yaxing
    Zhao, Pengpeng
    Liu, Guanfeng
    Liu, Yanchi
    Sheng, Victor S. S.
    Zhao, Lei
    Zhou, Xiaofang
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (05): : 2835 - 2854
  • [3] Quaternion-based graph convolution network for recommendation
    Yaxing Fang
    Pengpeng Zhao
    Guanfeng Liu
    Yanchi Liu
    Victor S. Sheng
    Lei Zhao
    Xiaofang Zhou
    World Wide Web, 2023, 26 : 2835 - 2854
  • [4] Quaternion-Based Graph Contrastive Learning for Recommendation
    Fang, Yaxing
    Zhao, Pengpeng
    Xian, Xuefeng
    Fang, Junhua
    Liu, Guanfeng
    Liu, Yanchi
    Sheng, Victor S.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [5] Dual Quaternion Based Collaborative Knowledge Graph Modeling for Recommendation
    Cao Z.-S.
    Xu Q.-Q.
    Li Z.-P.
    Jiang Y.
    Cao X.-C.
    Huang Q.-M.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (10): : 2221 - 2242
  • [6] Graph neural network for recommendation in complex and quaternion spaces
    Wu, Longcan
    Wang, Daling
    Feng, Shi
    Zhou, Xiangmin
    Zhang, Yifei
    Yu, Ge
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (06): : 3945 - 3964
  • [7] Graph neural network for recommendation in complex and quaternion spaces
    Longcan Wu
    Daling Wang
    Shi Feng
    Xiangmin Zhou
    Yifei Zhang
    Ge Yu
    World Wide Web, 2023, 26 (6) : 3945 - 3964
  • [8] A novel Knowledge Graph recommendation algorithm based on Graph Convolutional Network
    Guo, Hui
    Yang, Chengyong
    Zhou, Liqing
    Wei, Shiwei
    CONNECTION SCIENCE, 2024, 36 (01)
  • [9] Knowledge Graph Embedding Based on Quaternion Transformation and Convolutional Neural Network
    Gao, Yabin
    Tian, Xiaoyun
    Zhou, Jing
    Zheng, Bin
    Li, Hairu
    Zhu, Zizhong
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2021, PT II, 2022, 13088 : 128 - 136
  • [10] A Recommendation Approach Based on Heterogeneous Network and Dynamic Knowledge Graph
    Wan, Shanshan
    Wu, Yuquan
    Liu, Ying
    Xiao, Linhu
    Guo, Maozu
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2024, 2024