Infinitesimal bendings of complete Euclidean hypersurfaces

被引:6
作者
Jimenez, Miguel Ibieta [1 ]
机构
[1] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
关键词
RIGIDITY;
D O I
10.1007/s00229-018-1000-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A local description of the non-flat infinitesimally bendable Euclidean hypersurfaces was recently given by Dajczer and Vlachos (Ann Mat 196: 1961-1979, 2017. https:// doi. org/10.1007/s10231-017-0641-8). From their classification, it follows that there is an abundance of infinitesimally bendable hypersurfaces that are not isometrically bendable. In this paper we consider the case of complete hypersurfaces f : Mn. Rn+ 1, n = 4. If there is no open subset where f is either totally geodesic or a cylinder over an unbounded hypersurface of R4, we prove that f is infinitesimally bendable only along ruled strips. In particular, if the hypersurface is simply connected, this implies that any infinitesimal bending of f is the variational field of an isometric bending.
引用
收藏
页码:513 / 527
页数:15
相关论文
共 9 条
  • [1] Cartan E., 1916, B SOC MATH FRANCE, V44, P65, DOI DOI 10.24033/BSMF.964
  • [2] The infinitesimally bendable Euclidean hypersurfaces
    Dajczer, M.
    Vlachos, Th.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) : 1961 - 1979
  • [3] On Deformable Hypersurfaces in Space Forms
    Dajczer, M.
    Florit, L.
    Tojeiro, R.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1998, 174 (01) : 361 - 390
  • [4] DAJCZER M, 1990, J DIFFER GEOM, V31, P401
  • [5] INFINITESIMAL RIGIDITY OF EUCLIDEAN SUBMANIFOLDS
    DAJCZER, M
    RODRIGUEZ, L
    [J]. ANNALES DE L INSTITUT FOURIER, 1990, 40 (04) : 939 - 949
  • [6] Dajczer M., 1990, Submanifolds and Isometric Immersions, Mathematics Lecture Series
  • [7] SACKSTEDER R, 1962, J MATH MECH, V11, P929
  • [8] Sbrana U., 1909, REND CIRC MAT PALERM, V27, P1, DOI DOI 10.1007/BF03019643
  • [9] Sbrana U., 1908, ANN MAT PUR APPL, V15, P329, DOI DOI 10.1007/BF02419765