Symmetric quadrature rules on a triangle

被引:111
|
作者
Wandzura, S
Xiao, H
机构
[1] HRL Labs, Malibu, CA 90265 USA
[2] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
关键词
symmetric quadrature; triangle; Gaussian quadrature;
D O I
10.1016/S0898-1221(03)90004-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a class of quadrature rules on triangles in R-2 which, somewhat similar to Gaussian rules on intervals in R-1, have rapid convergence, positive weights, and symmetry. By a scheme combining simple group theory and numerical optimization, we obtain quadrature rules of this kind up to the order 30 on triangles. This scheme, essentially a formalization and generalization of the approach used by Lyness and Jespersen over 25 years ago, can be easily extended to other regions in R-2 and surfaces in higher dimensions, such as squares, spheres. We present example formulae and relevant numerical results. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1829 / 1840
页数:12
相关论文
共 50 条
  • [41] The set of anti-Gaussian quadrature rules for the optimal set of quadrature rules in Borges' sense
    Petrovic, Nevena Z.
    Pranic, Miroslav S.
    Stanic, Marija P.
    Mladenovic, Tatjana V. Tomovic
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 442
  • [42] A new class of quadrature rules for estimating the error in Gauss quadrature
    Pejcev, Aleksandar V.
    Reichel, Lothar
    Spalevic, Miodrag M.
    Spalevic, Stefan M.
    APPLIED NUMERICAL MATHEMATICS, 2024, 204 : 206 - 221
  • [43] Quasi-symmetric orthogonal polynomials on the real line: moments, quadrature rules and invariance under Christoffel modifications
    Daniel O. Veronese
    Jairo S. Silva
    Junior A. Pereira
    Computational and Applied Mathematics, 2023, 42
  • [44] Quasi-symmetric orthogonal polynomials on the real line: moments, quadrature rules and invariance under Christoffel modifications
    Veronese, Daniel O.
    Silva, Jairo S.
    Pereira, Junior A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (03):
  • [45] Szego-Lobatto quadrature rules
    Jagels, Carl
    Reichel, Lothar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) : 116 - 126
  • [46] Extended quadrature rules for oscillatory integrands
    Kim, KJ
    Cools, R
    Ixaru, LG
    APPLIED NUMERICAL MATHEMATICS, 2003, 46 (01) : 59 - 73
  • [47] Interpolatory Quadrature Rules for Oscillatory Integrals
    Veerle Ledoux
    Marnix Van Daele
    Journal of Scientific Computing, 2012, 53 : 586 - 607
  • [48] Quadrature rules and distribution of points on manifolds
    Brandolini, Luca
    Choirat, Christine
    Colzani, Leonardo
    Gigante, Giacomo
    Seri, Raffaello
    Travaglini, Giancarlo
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2014, 13 (04) : 889 - 923
  • [49] A note on equal coefficient quadrature rules
    Hashemiparast, S. M.
    Eslahchi, M. R.
    Dehghan, Mehdi
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (01) : 153 - 159
  • [50] Computing discrepancies of Smolyak quadrature rules
    Frank, K
    Heinrich, S
    JOURNAL OF COMPLEXITY, 1996, 12 (04) : 287 - 314