Symmetric quadrature rules on a triangle

被引:111
|
作者
Wandzura, S
Xiao, H
机构
[1] HRL Labs, Malibu, CA 90265 USA
[2] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
关键词
symmetric quadrature; triangle; Gaussian quadrature;
D O I
10.1016/S0898-1221(03)90004-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a class of quadrature rules on triangles in R-2 which, somewhat similar to Gaussian rules on intervals in R-1, have rapid convergence, positive weights, and symmetry. By a scheme combining simple group theory and numerical optimization, we obtain quadrature rules of this kind up to the order 30 on triangles. This scheme, essentially a formalization and generalization of the approach used by Lyness and Jespersen over 25 years ago, can be easily extended to other regions in R-2 and surfaces in higher dimensions, such as squares, spheres. We present example formulae and relevant numerical results. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1829 / 1840
页数:12
相关论文
共 50 条
  • [31] FULLY SYMMETRIC KERNEL QUADRATURE
    Karvonen, Toni
    Sarkka, Simo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02): : A697 - A720
  • [32] A SYMMETRIC DISSECTION OF AN ISOSCELES TRIANGLE
    DOU, J
    AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (08): : 592 - 593
  • [33] Quadrature rules for rational functions
    Walter Gautschi
    Laura Gori
    M. Laura Lo Cascio
    Numerische Mathematik, 2000, 86 : 617 - 633
  • [34] A probabilistic model for quadrature rules
    Masjed-Jamei, Mohammad
    Dehghan, Mehdi
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 1520 - 1526
  • [35] Symmetric Lie models of a triangle
    Buijs, Urtzi
    Felix, Yves
    Murillo, Aniceto
    Tanre, Daniel
    FUNDAMENTA MATHEMATICAE, 2019, 246 (03) : 289 - 300
  • [36] The extended symmetric block Lanczos method for matrix-valued Gauss-type quadrature rules
    Bentbib, A. H.
    Jbilou, K.
    Reichel, L.
    El Ghomari, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 407
  • [37] On the application of two symmetric Gauss Legendre quadrature rules for composite numerical integration over a triangular surface
    Rathod, H. T.
    Nagaraja, K. V.
    Venkatesudu, B.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) : 21 - 39
  • [38] On the Application of Two Symmetric Gauss Legendre Quadrature Rules for Composite Numerical Integration Over a Tetrahedral Region
    Rathod, H. T.
    Venkatesudu, B.
    Nagaraja, K. V.
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2006, 7 (06): : 445 - 459
  • [39] Quadrature rules from a RII type recurrence relation and associated quadrature rules on the unit circle
    Cleonice F. Bracciali
    Junior A. Pereira
    A. Sri Ranga
    Numerical Algorithms, 2020, 83 : 1029 - 1061
  • [40] Quadrature rules from a RII type recurrence relation and associated quadrature rules on the unit circle
    Bracciali, Cleonice F.
    Pereira, Junior A.
    Ranga, A. Sri
    NUMERICAL ALGORITHMS, 2020, 83 (03) : 1029 - 1061