Symmetric quadrature rules on a triangle

被引:111
|
作者
Wandzura, S
Xiao, H
机构
[1] HRL Labs, Malibu, CA 90265 USA
[2] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
关键词
symmetric quadrature; triangle; Gaussian quadrature;
D O I
10.1016/S0898-1221(03)90004-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a class of quadrature rules on triangles in R-2 which, somewhat similar to Gaussian rules on intervals in R-1, have rapid convergence, positive weights, and symmetry. By a scheme combining simple group theory and numerical optimization, we obtain quadrature rules of this kind up to the order 30 on triangles. This scheme, essentially a formalization and generalization of the approach used by Lyness and Jespersen over 25 years ago, can be easily extended to other regions in R-2 and surfaces in higher dimensions, such as squares, spheres. We present example formulae and relevant numerical results. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1829 / 1840
页数:12
相关论文
共 50 条
  • [1] MODERATE DEGREE SYMMETRIC QUADRATURE RULES FOR TRIANGLE
    LYNESS, JN
    JESPERSEN, D
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1975, 15 (01): : 19 - 32
  • [2] Symmetric triangle quadrature rules for arbitrary functions
    Freno, Brian A.
    Johnson, William A.
    Zinser, Brian F.
    Campione, Salvatore
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (10) : 2885 - 2896
  • [3] Associated symmetric quadrature rules
    Ranga, AS
    deAndrade, EXL
    Phillips, GM
    APPLIED NUMERICAL MATHEMATICS, 1996, 21 (02) : 175 - 183
  • [4] Inversely symmetric interpolatory quadrature rules
    de Andrade, EXL
    Bracciali, CF
    Ranga, AS
    ACTA APPLICANDAE MATHEMATICAE, 2000, 61 (1-3) : 15 - 28
  • [5] Inversely Symmetric Interpolatory Quadrature Rules
    E. X. L. de Andrade
    C. F. Bracciali
    A. Sri Ranga
    Acta Applicandae Mathematica, 2000, 61 : 15 - 28
  • [6] A SET OF SYMMETRIC QUADRATURE RULES ON TRIANGLES AND TETRAHEDRA
    Linbo Zhang Tao Cui Hui Liu LSEC
    JournalofComputationalMathematics, 2009, 27 (01) : 89 - 96
  • [7] STRUCTURE OF FULLY SYMMETRIC MULTIDIMENSIONAL QUADRATURE RULES
    KEAST, P
    LYNESS, JN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (01) : 11 - 29
  • [8] ERROR BOUNDS FOR FULLY SYMMETRIC QUADRATURE RULES
    LETHER, FG
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (01) : 1 - 9
  • [9] A SET OF SYMMETRIC QUADRATURE RULES ON TRIANGLES AND TETRAHEDRA
    Zhang, Linbo
    Cui, Tao
    Liu, Hui
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (01) : 89 - 96
  • [10] A family of symmetric, optimized quadrature rules for pentatopes
    Williams, David M.
    Frontin, Cory V.
    Miller, Edward A.
    Darmofal, David L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 1405 - 1420