Homoclinic orbits and localized solutions in nonlinear Schrodinger lattices

被引:35
|
作者
Qin, Wen-Xin [1 ]
Xiao, Xufeng
机构
[1] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
[2] So Yangtze Univ, Dept Math, Wuxi 214122, Peoples R China
关键词
D O I
10.1088/0951-7715/20/10/002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the symmetry properties of the reversible planar maps, instead of the Melnikov analysis, we improve the homoclinic orbit approach without assuming small perturbations to prove rigorously the existence of bright and dark soliton solutions of the discrete nonlinear Schrodinger equations with various nonlinearities in one-dimensional lattices. Our approach is valid both for small and large coupling constants. The latter case is inaccessible to the anti-integrability method.
引用
收藏
页码:2305 / 2317
页数:13
相关论文
共 50 条
  • [1] Homoclinic orbits and localized solutions in discrete nonlinear Schrodinger equation with long-range interaction
    Mehazzem, Allal
    Abdelouahab, Mohamed Saleh
    Haouam, Kamel
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 353 - 363
  • [2] Homoclinic orbits for a perturbed nonlinear Schrodinger equation
    Zeng, CC
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2000, 53 (10) : 1222 - 1283
  • [3] Homoclinic orbits for perturbed coupled nonlinear Schrodinger equations
    Wu, RC
    Sun, JH
    CHAOS SOLITONS & FRACTALS, 2006, 29 (02) : 423 - 430
  • [4] Persistent homoclinic orbits for a perturbed nonlinear Schrodinger equation
    Li, Y
    McLaughlin, DW
    Shatah, J
    Wiggins, S
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1996, 49 (11) : 1175 - 1255
  • [5] Near homoclinic orbits of the focusing nonlinear Schrodinger equation
    Wright, OC
    NONLINEARITY, 1999, 12 (05) : 1277 - 1287
  • [6] Homoclinic orbits for coupled modified nonlinear Schrodinger equations
    Wu, Ranchao
    Jiang, Wei
    Li, Lei
    CHAOS SOLITONS & FRACTALS, 2008, 38 (04) : 1093 - 1103
  • [7] Quasiperiodic oscillations and homoclinic orbits in the nonlinear nonlocal Schrodinger equation
    Maucher, F.
    Siminos, E.
    Krolikowski, W.
    Skupin, S.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [8] Multibreathers and homoclinic orbits in 1-dimensional nonlinear lattices
    Bountis, T
    Capel, HW
    Kollmann, M
    Ross, JC
    Bergamin, JM
    van der Weele, JP
    PHYSICS LETTERS A, 2000, 268 (1-2) : 50 - 60
  • [9] Localized and periodic exact solutions to the nonlinear Schrodinger equation with spatially modulated parameters: Linear and nonlinear lattices
    Belmonte-Beitia, Juan
    Konotop, Vladimir V.
    Perez-Garcia, Victor M.
    Vekslerchik, Vadym E.
    CHAOS SOLITONS & FRACTALS, 2009, 41 (03) : 1158 - 1166
  • [10] Homoclinic and heteroclinic orbits for near-integrable coupled nonlinear Schrodinger equations
    Deng, Guifeng
    Zhu, Deming
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (04) : 817 - 827