Time-varying models for extreme values

被引:59
|
作者
Huerta, Gabriel [1 ]
Sanso, Bruno
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA USA
基金
美国国家科学基金会;
关键词
spatio-temporal process; extreme values; GEV distribution; process convolutions; MCMC; ozone levels;
D O I
10.1007/s10651-007-0014-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose a new approach for modeling extreme values that are measured in time and space. First we assume that the observations follow a Generalized Extreme Value (GEV) distribution for which the location, scale or shape parameters define the space-time structure. The temporal component is defined through a Dynamic Linear Model (DLM) or state space representation that allows to estimate the trend or seasonality of the data in time. The spatial element is imposed through the evolution matrix of the DLM where we adopt a process convolution form. We show how to produce temporal and spatial estimates of our model via customized Markov Chain Monte Carlo (MCMC) simulation. We illustrate our methodology with extreme values of ozone levels produced daily in the metropolitan area of Mexico City and with rainfall extremes measured at the Caribbean coast of Venezuela.
引用
收藏
页码:285 / 299
页数:15
相关论文
共 50 条
  • [21] TIME-VARYING COPULA MODELS FOR FINANCIAL TIME SERIES
    Kiesel, Ruediger
    Mroz, Magda
    Stadtmueller, Ulrich
    ADVANCES IN APPLIED PROBABILITY, 2016, 48 (0A) : 159 - 180
  • [22] Option values in sequential auctions with time-varying valuations
    Ban, Amir
    Lavi, Ron
    INTERNATIONAL JOURNAL OF GAME THEORY, 2021, 50 (01) : 75 - 104
  • [23] Option values in sequential auctions with time-varying valuations
    Amir Ban
    Ron Lavi
    International Journal of Game Theory, 2021, 50 : 75 - 104
  • [24] FINDING INITIAL VALUES FOR TIME-VARYING JOINT DIAGONALIZATION
    Hori, Gen
    Tanaka, Toshihisa
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2018 - 2021
  • [25] ANALYSIS OF TIME-VARYING SIGNALS WITH SMALL BT VALUES
    KODERA, K
    GENDRIN, R
    VILLEDARY, CD
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1978, 26 (01): : 64 - 76
  • [26] Time-varying sparsity in dynamic regression models
    Kalli, Maria
    Griffin, Jim E.
    JOURNAL OF ECONOMETRICS, 2014, 178 (02) : 779 - 793
  • [27] Wavelet estimation in time-varying coefficient models
    Xingcai Zhou
    Beibei Ni
    Chunhua Zhu
    Lithuanian Mathematical Journal, 2019, 59 : 276 - 293
  • [28] Dynamical models of love with time-varying fluctuations
    Wauer, J.
    Schwarzer, D.
    Cai, G. Q.
    Lin, Y. K.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (02) : 1535 - 1548
  • [29] Time-varying smooth transition autoregressive models
    Lundbergh, S
    Teräsvirta, T
    van Dijk, D
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2003, 21 (01) : 104 - 121
  • [30] Time-Varying Autoregressive Models for Economic Forecasting
    Inayati, Syarifah
    Iriawan, Nur
    Irhamah
    MATEMATIKA, 2024, 40 (03) : 131 - 142