Time-varying models for extreme values

被引:59
|
作者
Huerta, Gabriel [1 ]
Sanso, Bruno
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA USA
基金
美国国家科学基金会;
关键词
spatio-temporal process; extreme values; GEV distribution; process convolutions; MCMC; ozone levels;
D O I
10.1007/s10651-007-0014-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose a new approach for modeling extreme values that are measured in time and space. First we assume that the observations follow a Generalized Extreme Value (GEV) distribution for which the location, scale or shape parameters define the space-time structure. The temporal component is defined through a Dynamic Linear Model (DLM) or state space representation that allows to estimate the trend or seasonality of the data in time. The spatial element is imposed through the evolution matrix of the DLM where we adopt a process convolution form. We show how to produce temporal and spatial estimates of our model via customized Markov Chain Monte Carlo (MCMC) simulation. We illustrate our methodology with extreme values of ozone levels produced daily in the metropolitan area of Mexico City and with rainfall extremes measured at the Caribbean coast of Venezuela.
引用
收藏
页码:285 / 299
页数:15
相关论文
共 50 条
  • [1] Time-varying models for extreme values
    Gabriel Huerta
    Bruno Sansó
    Environmental and Ecological Statistics, 2007, 14 : 285 - 299
  • [2] Time-varying extreme pattern with dynamic models
    Fernando Ferraz do Nascimento
    Dani Gamerman
    Hedibert Freitas Lopes
    TEST, 2016, 25 : 131 - 149
  • [3] Time-varying extreme pattern with dynamic models
    do Nascimento, Fernando Ferraz
    Gamerman, Dani
    Lopes, Hedibert Freitas
    TEST, 2016, 25 (01) : 131 - 149
  • [4] Regression models for time-varying extremes
    Lima, Stenio Rodrigues
    do Nascimento, Fernando Ferraz
    da Silva Ferraz, Valmaria Rocha
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (02) : 235 - 249
  • [5] An application of three bivariate time-varying volatility models
    Vrontos, ID
    Giakoumatos, SG
    Dellaportas, P
    Politis, DN
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2001, 17 (01) : 121 - 133
  • [7] Time-dependent shrinkage of time-varying parameter regression models
    He, Zhongfang
    ECONOMETRIC REVIEWS, 2024, 43 (01) : 1 - 29
  • [8] Locally time-varying parameter regression
    He, Zhongfang
    ECONOMETRIC REVIEWS, 2024, 43 (05) : 269 - 300
  • [9] Time-varying rankings with the Bayesian Mallows model
    Asfaw, Derbachew
    Vitelli, Valeria
    Sorensen, Oystein
    Arjas, Elja
    Frigessi, Arnoldo
    STAT, 2017, 6 (01): : 14 - 30
  • [10] Applying a time-varying GEV distribution to correct bias in rainfall quantiles derived from regional climate models
    Onderka, Milan
    Pecho, Jozef
    Szolgay, Jan
    Kohnova, Silvia
    Garaj, Marcel
    Mikulova, Katarina
    Varsova, Svetlana
    Lukasova, Veronika
    Vyleta, Roman
    Rutkowska, Agnieszka
    JOURNAL OF HYDROLOGY AND HYDROMECHANICS, 2024, 72 (04) : 499 - 512