Hermite-Discontinuous Galerkin Overset Grid Methods for the Scalar Wave Equation

被引:8
|
作者
Beznosov, Oleksii [1 ]
Appelo, Daniel [2 ]
机构
[1] Univ New Mexico, Dept Math & Stat, 1 Univ New Mexico,MSC01 1115, Albuquerque, NM, Mexico
[2] Univ Colorado, Dept Appl Math, Univ Colorado 526 UCB, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
Wave equation; Overset grids; High order; Hermite methods; Discontinuous Galerkin methods; MAXWELLS EQUATIONS; UPWIND SCHEMES; ELEMENT-METHOD; PROPAGATION; DISCRETIZATION;
D O I
10.1007/s42967-020-00075-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present high order accurate numerical methods for the wave equation that combines efficient Hermite methods with geometrically flexible discontinuous Galerkin methods by using overset grids. Near boundaries we use thin boundary fitted curvilinear grids and in the volume we use Cartesian grids so that the computational complexity of the solvers approaches a structured Cartesian Hermite method. Unlike many other overset methods we do not need to add artificial dissipation but we find that the built-in dissipation of the Hermite and discontinuous Galerkin methods is sufficient to maintain the stability. By numerical experiments we demonstrate the stability, accuracy, efficiency, and the applicability of the methods to forward and inverse problems.
引用
收藏
页码:391 / 418
页数:28
相关论文
共 50 条
  • [31] Discontinuous Galerkin methods for a dispersive wave hydro-sediment-morphodynamic model
    Kazhyken, Kazbek
    Videman, Juha
    Dawson, Clint
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 377 (377)
  • [32] Unconditional stability and optimal error estimates of discontinuous Galerkin methods for the second-order wave equation
    He, Limin
    Han, Weimin
    Wang, Fei
    Cai, Wentao
    APPLICABLE ANALYSIS, 2021, 100 (06) : 1143 - 1157
  • [33] Sparse grid discontinuous Galerkin methods for the Vlasov-Maxwell system
    Tao Z.
    Guo W.
    Cheng Y.
    Journal of Computational Physics: X, 2019, 3
  • [34] Semi-Lagrangian discontinuous Galerkin methods for scalar hyperbolic conservation laws
    Kometa, Bawfeh K.
    Tambue, Antoine
    Iqbal, Naveed
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (05) : 482 - 503
  • [35] Discontinuous Galerkin Methods and Local Time Stepping for Wave Propagation
    Grote, M. J.
    Mitkova, T.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 320 - 323
  • [36] CONSERVATIVE, DISCONTINUOUS GALERKIN-METHODS FOR THE GENERALIZED KORTEWEG-DE VRIES EQUATION
    Bona, J. L.
    Chen, H.
    Karakashian, O.
    Xing, Y.
    MATHEMATICS OF COMPUTATION, 2013, 82 (283) : 1401 - 1432
  • [37] Numerical simulation of seismic wave equation by local discontinuous Galerkin method
    Lian Xi-Meng
    Zhang Rui-Xuan
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2013, 56 (10): : 3507 - 3513
  • [38] Discontinuous Galerkin Methods and Local Time Stepping for Wave Propagation
    Grote, M. J.
    Mitkova, T.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 2119 - 2122
  • [39] STABILITY ANALYSIS OF THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD FOR THE WAVE EQUATION
    Agut, Cyril
    Diaz, Julien
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (03): : 903 - 932
  • [40] PLANE WAVE DISCONTINUOUS GALERKIN METHODS FOR THE 2D HELMHOLTZ EQUATION: ANALYSIS OF THE p-VERSION
    Hiptmair, R.
    Moiola, A.
    Perugia, I.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (01) : 264 - 284