Activation of Nrf2 by Sulforaphane Inhibits High Glucose-Induced Progression of Pancreatic Cancer via AMPK Dependent Signaling

被引:56
作者
Chen, Xin [1 ]
Jiang, Zhengdong [1 ]
Zhou, Cancan [1 ]
Chen, Ke [1 ]
Li, Xuqi [2 ]
Wang, Zheng [1 ]
Wu, Zheng [1 ]
Ma, Jiguang [3 ]
Ma, Qingyong [1 ]
Duan, Wanxing [1 ]
机构
[1] Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Hepatobiliary Surg, 277 West Yanta Rd, Xian 710061, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Gen Surg, Xian, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Anesthesiol, Xian, Shaanxi, Peoples R China
关键词
Sulforaphane; High glucose; Pancreatic cancer; Nrf2-AMPK signaling; ANTIDIABETIC MEDICATIONS; KAPPA-B; CELLS; APOPTOSIS; RISK; PREVENTION; PROTECTS; INVASION; TARGET; MICE;
D O I
10.1159/000494547
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background/Aims: Sulforaphane (SFN) is known for its potent bioactive properties, such as anti-inflammatory and anti-tumor effects. However, its anti-tumor effect on pancreatic cancer is still poorly understood. In the present study, we explored the therapeutic potential of SFN for pancreatic cancer and disclosed the underlying mechanism. Methods: Panc-1 and MiaPaca-2 cell lines were used in vitro. The biological function of SFN in pancreatic cancer was measured using EdU staining, colony formation, apoptosis, migration and invasion assays. Reactive oxygen species (ROS) production was measured using 2'-7'-Dichlorofluorescein diacetate (DCF-DA) fluorometric analysis. Western blotting and immunofluorescence were used to measure the protein levels of p-AMPK and epithelial-mesenchymal transition (EMT) pathway-related proteins, and cellular translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Nude mice and transgenic pancreatic cancer mouse model were used to measure the therapeutic potential of SFN on pancreatic cancer. Results: SFN can inhibit pancreatic cancer cell growth, promote apoptosis, curb colony formation and temper the migratory and invasion ability of pancreatic cancer cells. Mechanistically, excessive ROS production induced by SFN activated AMPK signaling and promoted the translocation of Nrf2, resulting in cell viability inhibition of pancreatic cancer. Pretreatment with compound C, a small molecular inhibitor of AMPK signaling, reversed the subcellular translocation of Nrf2 and rescued cell invasion ability. With nude mice and pancreatic cancer transgenic mouse, we identified SFN could inhibit tumor progression, with smaller tumor size and slower tumor progression in SFN treatment group. Conclusion: Our study not only elucidates the mechanism of SFN-induced inhibition of pancreatic cancer in both normal and high glucose condition, but also testifies the dual-role of ROS in pancreatic cancer progression. Collectively, our research suggests that SFN may serve as a potential therapeutic choice for pancreatic cancer. (C) 2018 The Author(s) Published by S. Karger AG, Basel
引用
收藏
页码:1201 / 1215
页数:15
相关论文
共 39 条
  • [1] Atwell Lauren L, 2015, Curr Pharmacol Rep, V1, P102
  • [2] Prevention of Carcinogen-Induced Oral Cancer by Sulforaphane
    Bauman, Julie E.
    Zang, Yan
    Sen, Malabika
    Li, Changyou
    Wang, Lin
    Egner, Patricia A.
    Fahey, Jed W.
    Normolle, Daniel P.
    Grandis, Jennifer R.
    Kensler, Thomas W.
    Johnson, Daniel E.
    [J]. CANCER PREVENTION RESEARCH, 2016, 9 (07) : 547 - 557
  • [3] Diabetes, antidiabetic medications, and pancreatic cancer risk: an analysis from the International Pancreatic Cancer Case-Control Consortium
    Bosetti, C.
    Rosato, V.
    Li, D.
    Silverman, D.
    Petersen, G. M.
    Bracci, P. M.
    Neale, R. E.
    Muscat, J.
    Anderson, K.
    Gallinger, S.
    Olson, S. H.
    Miller, A. B.
    Bueno-de-Mesquita, H. Bas
    Scelo, G.
    Janout, V.
    Holcatova, I.
    Lagiou, P.
    Serraino, D.
    Lucenteforte, E.
    Fabianova, E.
    Ghadirian, P.
    Baghurst, P. A.
    Zatonski, W.
    Foretova, L.
    Fontham, E.
    Bamlet, W. R.
    Holly, E. A.
    Negri, E.
    Hassan, M.
    Prizment, A.
    Cotterchio, M.
    Cleary, S.
    Kurtz, R. C.
    Maisonneuve, P.
    Trichopoulos, D.
    Polesel, J.
    Duell, E. J.
    Boffetta, P.
    La Vecchia, C.
    [J]. ANNALS OF ONCOLOGY, 2014, 25 (10) : 2065 - 2072
  • [4] Metformin suppresses cancer initiation and progression in genetic mouse models of pancreatic cancer
    Chen, Ke
    Qian, Weikun
    Jiang, Zhengdong
    Cheng, Liang
    Li, Jie
    Sun, Liankang
    Zhou, Cancan
    Gao, Luping
    Lei, Meng
    Yan, Bin
    Cao, Junyu
    Duan, Wanxing
    Ma, Qingyong
    [J]. MOLECULAR CANCER, 2017, 16
  • [5] Dietary broccoli protects against fatty liver development but not against progression of liver cancer in mice pretreated with diethylnitrosamine
    Chen, Yung-Ju
    Myracle, Angela D.
    Wallig, Matthew A.
    Jeffery, Elizabeth H.
    [J]. JOURNAL OF FUNCTIONAL FOODS, 2016, 24 : 57 - 62
  • [6] Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver
    Costa-Silva, Bruno
    Aiello, Nicole M.
    Ocean, Allyson J.
    Singh, Swarnima
    Zhang, Haiying
    Thakur, Basant Kumar
    Becker, Annette
    Hoshino, Ayuko
    Mark, Milica Tesic
    Molina, Henrik
    Xiang, Jenny
    Zhang, Tuo
    Theilen, Till-Martin
    Garcia-Santos, Guillermo
    Williams, Caitlin
    Ararso, Yonathan
    Huang, Yujie
    Rodrigues, Goncalo
    Shen, Tang-Long
    Labori, Knut Jorgen
    Lothe, Inger Marie Bowitz
    Kure, Elm H.
    Hernandez, Jonathan
    Doussot, Alexandre
    Ebbesen, Saya H.
    Grandgenett, Paul M.
    Hollingsworth, Michael A.
    Jain, Maneesh
    Mallya, Kavita
    Batra, Surinder K.
    Jarnagin, William R.
    Schwartz, Robert E.
    Matei, Irina
    Peinado, Hector
    Stanger, Ben Z.
    Bromberg, Jacqueline
    Lyden, David
    [J]. NATURE CELL BIOLOGY, 2015, 17 (06) : 816 - +
  • [7] KEAP1 and done? Targeting the NRF2 pathway with sulforaphane
    Dinkova-Kostova, Albena T.
    Fahey, Jed W.
    Kostov, Rumen V.
    Kensler, Thomas W.
    [J]. TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2017, 69 : 257 - 269
  • [8] Desmoplasia suppression by metformin-mediated AMPK activation inhibits pancreatic cancer progression
    Duan, Wanxing
    Chen, Ke
    Jiang, Zhengdong
    Chen, Xin
    Sun, Liankang
    Li, Jiahui
    Lei, Jianjun
    Xu, Qinhong
    Ma, Jiguang
    Li, Xuqi
    Han, Liang
    Wang, Zheng
    Wu, Zheng
    Wang, Fengfei
    Wu, Erxi
    Ma, Qingyong
    Ma, Zhenhua
    [J]. CANCER LETTERS, 2017, 385 : 225 - 233
  • [9] Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors
    Fahey, JW
    Haristoy, X
    Dolan, PM
    Kensler, TW
    Scholtus, I
    Stephenson, KK
    Talalay, P
    Lozniewski, A
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (11) : 7610 - 7615
  • [10] Nuclear factor κB is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms
    Heiss, E
    Herhaus, C
    Klimo, K
    Bartsch, H
    Gerhäuser, C
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (34) : 32008 - 32015