Boron-iron nanochains for selective electrocatalytic reduction of nitrate

被引:55
作者
Ni, Fanfan [1 ]
Ma, Yuanyuan [1 ]
Chen, Junliang [1 ]
Luo, Wei [1 ,2 ]
Yang, Jianping [1 ,2 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[2] Donghua Univ, Inst Funct Mat, Shanghai 201620, Peoples R China
关键词
Nanostructured iron; Boron doping; Nitrate reduction reaction; Electrocatalysis; ZERO-VALENT IRON; NITROGEN; REMOVAL; NANOPARTICLES; PERFORMANCE; INTERFACE; CATALYSTS; NITRITE; FE; DENITRIFICATION;
D O I
10.1016/j.cclet.2021.03.042
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrocatalysis of nitrate reduction reaction (NRR) has been considered to be a promising nitrate removal technology. Developing a highly effective iron-based electrocatalyst is an essential challenge for NRR. Herein, boron-iron nanochains (B-Fe NCs) as efficient NRR catalysts were prepared via a facile low-cost and scalable method. The Fe/B ratio of the B-Fe NCs-x can be elaborately adjusted to optimize the NRR catalytic performance. Due to the electron transfer from boron to metal, the metal-metal bonds are weakened and the electron density near the metal atom centers are rearranged, which are favor of the conversion from NO3 into N-2. Moreover, the well-crosslinked chain-like architectures benefit the mass/electron transport to boost the exposure of abundant catalytic active sites. Laboratory experiments demonstrated that the optimized B-Fe NCs catalyst exhibits superior intrinsic electrocatalytic NRR activity of high nitrate conversion (similar to 80%), ultrahigh nitrogen selectivity (similar to 99%) and excellent long-term reactivity in the mixed electrolyte system (0.02 mol/L NaCl and 0.02 mol/L Na2SO4 mixed electrolyte), and the electrocatalytic activity of the material shows poor performance at low chloride ion concentration (Nitrate conversion of similar to 61% and nitrogen selectivity of similar to 57% in 0.005 mol/L NaCl and 0.035 mol/L Na2SO4 mixed electrolyte). This study provides a broad application prospect for further exploring the high-efficiency and low-cost iron-based functional nanostructures for electrocatalytic nitrate reduction. (C) 2021 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2073 / 2078
页数:6
相关论文
共 52 条
[1]   Ion-exchange polyHIPE type membrane for removing nitrate ions: Preparation, characterization, kinetics and adsorption studies [J].
Alikhani, M. ;
Moghbeli, M. R. .
CHEMICAL ENGINEERING JOURNAL, 2014, 239 :93-104
[2]   Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter [J].
Banasiak, Laura J. ;
Schaefer, Andrea I. .
JOURNAL OF MEMBRANE SCIENCE, 2009, 334 (1-2) :101-109
[3]   Multi-Component Fe-Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions [J].
Candelaria, Stephanie L. ;
Bedford, Nicholas M. ;
Woehl, Taylor J. ;
Rentz, Nikki S. ;
Showalter, Allison R. ;
Pylypenko, Svitlana ;
Bunker, Bruce A. ;
Lee, Sungsik ;
Reinhart, Benjamin ;
Ren, Yang ;
Ertem, S. Piril ;
Coughlin, E. Bryan ;
Sather, Nicholas A. ;
Horan, James L. ;
Herring, Andrew M. ;
Greenleette, Lauren F. .
ACS CATALYSIS, 2017, 7 (01) :365-379
[4]   The nature of the Fe-graphene interface at the nanometer level [J].
Cattelan, M. ;
Peng, G. W. ;
Cavaliere, E. ;
Artiglia, L. ;
Barinov, A. ;
Roling, L. T. ;
Favaro, M. ;
Pis, I. ;
Nappini, S. ;
Magnano, E. ;
Bondino, F. ;
Gavioli, L. ;
Agnoli, S. ;
Mavrikakis, M. ;
Granozzi, G. .
NANOSCALE, 2015, 7 (06) :2450-2460
[5]   Metal boride better than Pt: HCP Pd2B as a superactive hydrogen evolution reaction catalyst [J].
Chen, Lin ;
Zhang, Ling-Ran ;
Yao, Ling-Yan ;
Fang, Ya-Hui ;
He, Lin ;
Wei, Guang-Feng ;
Lu, Zhi-Pan .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (10) :3099-3105
[6]   Achieving high-performance nitrate electrocatalysis with PdCu nanoparticles confined in nitrogen-doped carbon coralline [J].
Chen, Miao ;
Wang, Haifeng ;
Zhao, Yuye ;
Luo, Wei ;
Li, Li ;
Bian, Zhenfeng ;
Wang, Lianjun ;
Jiang, Wan ;
Yang, Jianping .
NANOSCALE, 2018, 10 (40) :19023-19030
[7]   Biological denitrification in microbial fuel cells [J].
Clauwaert, Peter ;
Rabaey, Korneel ;
Aelterman, Peter ;
De Schamphelaire, Liesje ;
Ham, The Haip ;
Boeckx, Pascal ;
Boon, Nico ;
Verstraete, Willy .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (09) :3354-3360
[8]   Transition metal M (M = Co, Ni, and Fe) and boron co-modulation in Rh-based aerogels for highly efficient and pH-universal hydrogen evolution electrocatalysis [J].
Deng, Kai ;
Ren, Tianlun ;
Xu, You ;
Liu, Songliang ;
Dai, Zechuan ;
Wang, Ziqiang ;
Li, Xiaonian ;
Wang, Liang ;
Wang, Hongjing .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (11) :5595-5600
[9]   Highly active and durable carbon electrocatalyst for nitrate reduction reaction [J].
Duan, Weijian ;
Li, Ge ;
Lei, Zhenchao ;
Zhu, Tonghe ;
Xue, Yuzhou ;
Wei, Chaohai ;
Feng, Chunhua .
WATER RESEARCH, 2019, 161 :126-135
[10]   Electrocatalytic reduction of nitrite on a polycrystalline rhodium electrode [J].
Duca, M. ;
van der Klugt, B. ;
Hasnat, M. A. ;
Machida, M. ;
Koper, M. T. M. .
JOURNAL OF CATALYSIS, 2010, 275 (01) :61-69