Axion phenomenology and θ-dependence from Nif=2+1 lattice QCD

被引:128
作者
Bonati, Claudio [1 ,2 ]
D'Elia, Massimo [1 ,2 ]
Mariti, Marco [1 ,2 ]
Martinelli, Guido [3 ,4 ]
Mesiti, Michele [1 ,2 ]
Negro, Francesco [2 ]
Sanfilippo, Francesco [5 ]
Villadoro, Giovanni [6 ]
机构
[1] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
[2] Ist Nazl Fis Nucl, Sez Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy
[3] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[4] Ist Nazl Fis Nucl, Sez Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[5] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
[6] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
关键词
CP violation; Lattice QCD; TOPOLOGICAL SUSCEPTIBILITY; CP CONSERVATION; MONTE-CARLO; INSTANTONS; CHARGE; ZERO;
D O I
10.1007/JHEP03(2016)155
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the topological properties of N-f = 2 + 1 QCD with physical quark masses, both at zero and finite temperature. We adopt stout improved staggered fermions and explore a range of lattice spacings a similar to 0.05-0.12 fm. At zero temperature we estimate both finite size and finite cut-off effects, comparing our continuum extrapolated results for the topological susceptibility chi with predictions from chiral perturbation theory. At finite temperature, we explore a region going from T-c up to around 4 T-c, where we provide continuum extrapolated results for the topological susceptibility and for the fourth moment of the topological charge distribution. While the latter converges to the dilute instanton gas prediction the former differs strongly both in the size and in the temperature dependence. This results in a shift of the axion dark matter window of almost one order of magnitude with respect to the instanton computation.
引用
收藏
页数:27
相关论文
共 82 条
[1]   A COSMOLOGICAL BOUND ON THE INVISIBLE AXION [J].
ABBOTT, LF ;
SIKIVIE, P .
PHYSICS LETTERS B, 1983, 120 (1-3) :133-136
[2]  
Ade P.A.R., ARXIV150201589
[3]   Topological charge using cooling and the gradient flow [J].
Alexandrou, C. ;
Athenodorou, A. ;
Jansen, K. .
PHYSICAL REVIEW D, 2015, 92 (12)
[4]   Hybrid Monte Carlo and topological modes of full QCD [J].
Alles, B ;
Boyd, G ;
DElia, M ;
DiGiacomo, A ;
Vicari, E .
PHYSICS LETTERS B, 1996, 389 (01) :107-111
[5]   Topological susceptibility in full QCD at zero and finite temperature [J].
Allés, B ;
D'Elia, M ;
Di Giacomo, A .
PHYSICS LETTERS B, 2000, 483 (1-3) :139-143
[6]   Topological susceptibility at zero and finite T in SU(3) Yang-Mills theory (vol 494, pg 281, 1997) [J].
Allés, B ;
D'Elia, M ;
Di Giacomo, A .
NUCLEAR PHYSICS B, 2004, 679 (1-2) :397-399
[7]   Topological susceptibility at zero and finite T in SU(3) Yang-Mills theory [J].
Alles, B ;
DElia, M ;
DiGiacomo, A .
NUCLEAR PHYSICS B, 1997, 494 (1-2) :281-292
[8]   The QCD transition temperature: results with physical masses in the continuum limit II [J].
Aoki, Yasumichi ;
Borsanyi, Szabolcs ;
Duerr, Stephan ;
Fodor, Zoltan ;
Katz, Sandor D. ;
Krieg, Stefan ;
Szabo, Kalman .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06)
[9]   Lattice QCD ensembles with four flavors of highly improved staggered quarks [J].
Bazavov, A. ;
Bernard, C. ;
Komijani, J. ;
DeTar, C. ;
Levkova, L. ;
Freeman, W. ;
Gottlieb, Steven ;
Zhou, Ran ;
Heller, U. M. ;
Hetrick, J. E. ;
Laiho, J. ;
Osborn, J. ;
Sugar, R. L. ;
Toussaint, D. ;
Van de Water, R. S. .
PHYSICAL REVIEW D, 2013, 87 (05)
[10]   Topological susceptibility with the asqtad action [J].
Bazavov, A. ;
Toussaint, D. ;
Bernard, C. ;
Laiho, J. ;
Billeter, B. ;
DeTar, C. ;
Levkova, L. ;
Oktay, M. B. ;
Gottlieb, Steven ;
Heller, U. M. ;
Hetrick, J. E. ;
Osborn, J. ;
Sugar, R. L. ;
Van de Water, R. S. .
PHYSICAL REVIEW D, 2010, 81 (11)