On the theory of elliptic functions based on 2F1(1/3, 2/3; 1/2; z)

被引:5
作者
Shen, LC [1 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
关键词
Jacobian elliptic functions; theta functions; Weierstrass p function;
D O I
10.1090/S0002-9947-04-03600-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on properties of the hypergeometric series F-2(1)(1/3, 2/3; 1/2; z), we develop a theory of elliptic functions that shares many striking similarities with the classical Jacobian elliptic functions.
引用
收藏
页码:2043 / 2058
页数:16
相关论文
共 5 条
[1]   A CUBIC COUNTERPART OF JACOBIS IDENTITY AND THE AGM [J].
BORWEIN, JM ;
BORWEIN, PB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :691-701
[2]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA
[3]   On an identity of Ramanujan based on the hypergeometric series 2F1(1/3,2/3; 1/2; x). [J].
Shen, LC .
JOURNAL OF NUMBER THEORY, 1998, 69 (02) :125-134
[4]   ON THE MODULAR EQUATIONS OF DEGREE-3 [J].
SHEN, LC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (04) :1101-1114
[5]  
Whittaker E.T., 1966, COURSE MODERN ANAL