Ore's conjecture on color-critical graphs is almost true

被引:46
作者
Kostochka, Alexandr [1 ,2 ]
Yancey, Matthew [3 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Sobolev Inst Math, Novosibirsk 630090, Russia
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
Graph coloring; k-critical graphs; Sparse graphs; NUMBER; THEOREM; EDGES; PROOF; HYPERGRAPHS;
D O I
10.1016/j.jctb.2014.05.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is k-critical if it has chromatic number k, but every proper subgraph of G is (k - 1)-colorable. Let f(k)(n) denote the minimum number of edges in an n-vertex k-critical graph. We give a lower bound, f(k)(n) >= F(k, n), that is sharp for every n = 1 (mod k - 1). The bound is also sharp for k = 4 and every n >= 6. The result improves a bound by Gallai and subsequent bounds by Krivelevich and Kostochka and Stiebitz, and settles the corresponding conjecture by Gallai from 1963. It establishes the asymptotics of f(k)(n) for every fixed k. It also proves that the conjecture by Ore from 1967 that for every k >= 4 and n >= k + 2, f(k)(n + k - 1) = f(k)(n) + k - 1/2 (k - 2/k-1) holds for each k >= 4 for all but at most k(3)/12 values of n. We give a polynomial-time algorithm for (k - 1)-coloring of a graph G that satisfies vertical bar E(G[W])vertical bar < F(k, vertical bar W vertical bar) for all W subset of V(G), vertical bar W vertical bar >= k. We also present some applications of the result. Published by Elsevier Inc.
引用
收藏
页码:73 / 101
页数:29
相关论文
共 28 条
  • [1] [Anonymous], 1952, Proceedings of the London Mathematical Society, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
  • [2] [Anonymous], WILEY INTERSCI SER D
  • [3] Short proofs of coloring theorems on planar graphs
    Borodin, Oleg V.
    Kostochka, Alexandr V.
    Lidicky, Bernard
    Yancey, Matthew
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 314 - 321
  • [4] A new proof of Grunbaum's 3 color theorem
    Borodin, OV
    [J]. DISCRETE MATHEMATICS, 1997, 169 (1-3) : 177 - 183
  • [5] On colouring the nodes of a network
    Brooks, RL
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1941, 37 : 194 - 197
  • [6] Dirac G., 1951, Math. Z., V54, P347
  • [7] DIRAC G. A., 1952, J. London Math. Soc., Vs1-27, P85, DOI 10.1112/jlms/s1-27.1.85
  • [8] DIRAC G. A., 1957, Proc. London Math. Soc., Vs3-7, P161, DOI [10.1112/plms/s3-7.1.161, DOI 10.1112/PLMS/S3-7.1.161]
  • [9] Dirac G.A., 1956, J. Lond. Math. Soc, V31, P460, DOI DOI 10.1112/JLMS/S1-31.4.460
  • [10] ON THE EDGE-CLENSITY OF 4-CRITICAL GRAPHS
    Farzad, Babak
    Molloy, Michael
    [J]. COMBINATORICA, 2009, 29 (06) : 665 - 689