A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems

被引:33
作者
Abubakar, Auwal Bala [1 ,2 ,3 ]
Kumam, Poom [1 ,4 ,5 ]
Malik, Maulana [6 ]
Ibrahim, Abdulkarim Hassan [1 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, Fixed Point Res Lab,Fixed Point Theory & Applicat, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Bayero Univ, Fac Phys Sci, Dept Math Sci, Kano, Kano, Nigeria
[3] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Pretoria, South Africa
[4] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[6] Univ Indonesia UI, Fac Math & Nat Sci, Dept Math, Depok 16424, Indonesia
关键词
Unconstrained optimization; Three-term conjugate gradient method; Line search; Global convergence; GLOBAL CONVERGENCE; DESCENT PROPERTY; ALGORITHM;
D O I
10.1016/j.matcom.2021.05.038
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we propose a hybrid conjugate gradient (CG) scheme for solving unconstrained optimization problem. The search direction is a combination of the Polak-Ribiere-Polyak (PRP) and the Liu-Storey (LS) CG parameters and is close to the direction of the memoryless Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton scheme. Without the use of the line search, the search direction satisfies the descent condition and possesses the trust region property. The global convergence of the scheme for general functions under the Wolfe-type and Armijo-type line search is established. Numerical experiments are carried out on some benchmark test problems and the results show that the propose scheme is more efficient than other existing schemes. Finally, a practical application of the scheme in motion control of robot manipulator is also presented. (c) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:640 / 657
页数:18
相关论文
共 38 条
[1]   DESCENT PROPERTY AND GLOBAL CONVERGENCE OF THE FLETCHER REEVES METHOD WITH INEXACT LINE SEARCH [J].
ALBAALI, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (01) :121-124
[2]  
Andrei N., 2020, NONLINEAR CONJUGATE
[3]   A simple three-term conjugate gradient algorithm for unconstrained optimization [J].
Andrei, Neculai .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 241 :19-29
[4]   Convergence properties of nonlinear conjugate gradient methods [J].
Dai, YH ;
Han, JY ;
Liu, GH ;
Sun, DF ;
Yin, HX ;
Yuan, YX .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (02) :345-358
[5]   A nonlinear conjugate gradient method with a strong global convergence property [J].
Dai, YH ;
Yuan, Y .
SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) :177-182
[6]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[7]   Some new three-term Hestenes-Stiefel conjugate gradient methods with affine combination [J].
Dong, Xiao-Liang ;
Han, De-Ren ;
Ghanbari, Reza ;
Li, Xiang-Li ;
Dai, Zhi-Feng .
OPTIMIZATION, 2017, 66 (05) :759-776
[8]   FUNCTION MINIMIZATION BY CONJUGATE GRADIENTS [J].
FLETCHER, R ;
REEVES, CM .
COMPUTER JOURNAL, 1964, 7 (02) :149-&
[9]  
Fletcher R., 2013, Practical Methods of Optimization
[10]   GLOBAL CONVERGENCE PROPERTIES OF CONJUGATE GRADIENT METHODS FOR OPTIMIZATION [J].
Gilbert, Jean Charles ;
Nocedal, Jorge .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (01) :21-42