NEW GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS

被引:8
作者
Mohammed, Pshtiwan Othman [1 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2021年 / 15卷 / 02期
关键词
Riemann-Liouville fractional integral; convex function; Hermite-Hadamard inequality; convex functions; trapezoid formula; HADAMARD-TYPE INEQUALITIES;
D O I
10.7153/jmi-2021-15-38
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the literature, the right-side of Hermite-Hadamard's inequality is called trapezoid type inequality. In this paper, we obtain new integral inequalities of trapezoid type for convex functions involving generalized Riemann-Liouville fractional integrals (psi-Riemann-Liouville fractional integrals). Our obtained inequalities generalize some recent classical integral inequalities and Riemann-Liouville fractional integral inequalities which are established in earlier works.
引用
收藏
页码:511 / 519
页数:9
相关论文
共 32 条
[1]  
BALEANU D., INEQUALITIES TRAPEZO
[2]   Hardy and uncertainty inequalities on stratified Lie groups [J].
Ciatti, Paolo ;
Cowling, Michael G. ;
Ricci, Fulvio .
ADVANCES IN MATHEMATICS, 2015, 277 :365-387
[3]  
Dragomir S.S., 2000, RGMIA Monographs
[4]  
Dragomir SS, 2015, J COMPUT ANAL APPL, V18, P655
[5]   Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels [J].
Fernandez, Arran ;
Mohammed, Pshtiwan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) :8414-8431
[6]  
Gavrea B., 2010, Gen. Math, V18, P33
[7]  
Gunawan H, 2009, KYUNGPOOK MATH J, V49, P31
[8]   ON SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS [J].
HANSON, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (02) :545-550
[9]  
Khan MA, 2017, ACTA MATH UNIV COMEN, V86, P153
[10]  
Kilbas AA, 2006, Theory and applications of fractional differential equations, DOI DOI 10.1016/S0304-0208(06)80001-0