NEW GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS

被引:8
作者
Mohammed, Pshtiwan Othman [1 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2021年 / 15卷 / 02期
关键词
Riemann-Liouville fractional integral; convex function; Hermite-Hadamard inequality; convex functions; trapezoid formula; HADAMARD-TYPE INEQUALITIES;
D O I
10.7153/jmi-2021-15-38
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the literature, the right-side of Hermite-Hadamard's inequality is called trapezoid type inequality. In this paper, we obtain new integral inequalities of trapezoid type for convex functions involving generalized Riemann-Liouville fractional integrals (psi-Riemann-Liouville fractional integrals). Our obtained inequalities generalize some recent classical integral inequalities and Riemann-Liouville fractional integral inequalities which are established in earlier works.
引用
收藏
页码:511 / 519
页数:9
相关论文
共 32 条
  • [1] BALEANU D., INEQUALITIES TRAPEZO
  • [2] Hardy and uncertainty inequalities on stratified Lie groups
    Ciatti, Paolo
    Cowling, Michael G.
    Ricci, Fulvio
    [J]. ADVANCES IN MATHEMATICS, 2015, 277 : 365 - 387
  • [3] Dragomir S.S., 2000, Selected Topics on Hermite-Hadamard Inequalities and Applications
  • [4] Dragomir SS, 2015, J COMPUT ANAL APPL, V18, P655
  • [5] Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels
    Fernandez, Arran
    Mohammed, Pshtiwan
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 8414 - 8431
  • [6] Gavrea B., 2010, Gen. Math., V18, P33
  • [7] Gunawan H, 2009, KYUNGPOOK MATH J, V49, P31
  • [8] ON SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS
    HANSON, MA
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (02) : 545 - 550
  • [9] Khan MA, 2017, ACTA MATH UNIV COMEN, V86, P153
  • [10] Kilbas A., 2006, THEORY APPL FRACTION