Nondestructive assay of plutonium and minor actinide in spent fuel using nuclear resonance fluorescence with laser Compton scattering γ-rays

被引:43
作者
Hayakawa, Takehito [1 ]
Kikuzawa, Nobuhiro [2 ,3 ]
Hajima, Ryoichi [3 ]
Shizuma, Toshiyuki [1 ]
Nishimori, Nobuyuki [3 ]
Fujiwara, Mamoru [1 ,4 ]
Seya, Michio [5 ]
机构
[1] Japan Atom Energy Agcy, Adv Photon Res Ctr, Kizugawa, Kyoto 6190215, Japan
[2] Japan Atom Energy Agcy, J PARC Res Ctr, Tokai, Ibaraki 3191195, Japan
[3] Japan Atom Energy Agcy, Adv Photon Res Ctr, Tokai, Ibaraki 3191195, Japan
[4] Osaka Univ, Nucl Phys Res Ctr, Osaka 5670047, Japan
[5] Japan Atom Energy Agcy, Nucl Nonproliferat Sci & Technol Ctr, Tokai, Ibaraki 3191195, Japan
关键词
Spent fuel; Safeguards of nuclear materials; Nondestructive assay; CARGO;
D O I
10.1016/j.nima.2010.06.096
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We propose a new nondestructive assay method for (235)U, (239)Pu, and minor actinides in spent nuclear fuel assembly in a water pool. Nuclear fuel materials are detected using nuclear resonance fluorescence (NRF) with laser Compton scattering (LCS) gamma-rays. The NRF assay can provide a finger print of each isotope since the NRF gamma-ray energy is characteristic of a specific nuclide. We design a high-flux LCS gamma-ray source, in which gamma-rays are generated by collision of laser photons provided from Yb-doped fiber laser and electrons from energy recovery linac. This system has following advantages: this can detect isotopes of most elements behind heavy materials such as uranium of a thickness of several centimeters, and analyze the fuel assembly in a water pool. A simulation calculation shows that we can detect 1% fraction (239)Pu in all the fuel rods with statistical error lower than 2% using the high flux LCS gamma-ray source and the measurement time of 4000s. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:695 / 700
页数:6
相关论文
共 30 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   High-energy photon beam production with laser-Compton backscattering [J].
Aoki, K ;
Hosono, K ;
Hadame, T ;
Munenaga, H ;
Kinoshita, K ;
Toda, M ;
Amano, S ;
Miyamoto, S ;
Mochizuki, T ;
Aoki, M ;
Li, D .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 516 (2-3) :228-236
[3]   Nuclear resonance fluorescence imaging in non-intrusive cargo inspection [J].
Bertozzi, W ;
Ledoux, RJ .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2005, 241 (1-4) :820-825
[4]   Nuclear resonance fluorescence excitations near 2 MeV in 235U and 239Pu [J].
Bertozzi, W. ;
Caggiano, J. A. ;
Hensley, W. K. ;
Johnson, M. S. ;
Korbly, S. E. ;
Ledoux, R. J. ;
McNabb, D. P. ;
Norman, E. B. ;
Park, W. H. ;
Warren, G. A. .
PHYSICAL REVIEW C, 2008, 78 (04)
[5]  
Charlton W. S., 2009, 31 ANN M S SAFEGUARD, P440
[6]   Simulated response characteristics of Gammasphere [J].
Devlin, M ;
Sobotka, LG ;
Sarantites, DG ;
LaFosse, DR .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1996, 383 (2-3) :506-512
[7]   A γ-ray detector array for joint spectroscopy experiments at the JAERI tandem-booster facility [J].
Furuno, K ;
Oshima, H ;
Komatsubara, T ;
Furutaka, K ;
Hayakawa, T ;
Kidera, M ;
Hatsukawa, Y ;
Matsuda, M ;
Mitarai, S ;
Shizuma, T ;
Saitoh, T ;
Hashimoto, N ;
Kusakari, H ;
Sugawara, M ;
Morikawa, T .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 421 (1-2) :211-226
[8]   Transmission-based detection of nuclides with nuclear resonance fluorescence using a quasimonoenergetic photon source [J].
Hagmann, C. A. ;
Hall, J. M. ;
Johnson, M. S. ;
McNabb, D. P. ;
Kelley, J. H. ;
Huibregtse, C. ;
Kwan, E. ;
Rusev, G. ;
Tonchev, A. P. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (08)
[9]  
HAJIMA R, 2007, P 8 INT TOP M NUCL A, P182
[10]   Proposal of nondestructive radionuclide assay using a high-flux gamma-ray source and nuclear resonance fluorescence [J].
Hajima, Ryoichi ;
Hayakawa, Takehito ;
Kikuzawa, Nobuhiro ;
Minehara, Eisuke .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2008, 45 (05) :441-451