Rigidity for group actions on homogeneous spaces by affine transformations

被引:0
作者
Bouljihad, Mohamed [1 ,2 ]
机构
[1] ENS Lyon, UMPA, 46 Allee Italie, F-69364 Lyon, France
[2] IRMAR, Campus Beaulieu,Batiments 22 & 23, F-35042 Rennes, France
关键词
RELATIVE PROPERTY T; EQUIVALENCE-RELATIONS; KAZHDAN PROPERTY; II1; FACTORS; THEOREM;
D O I
10.1017/etds.2015.124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a criterion for the rigidity of the action of a group of affine transformations of a homogeneous space of a real Lie group. Let G be a real Lie group, Lambda a lattice in G, and Gamma a subgroup of the affine group Aff(G) stabilizing Lambda. Then the action of Gamma on G/Lambda has the rigidity property in the sense of Popa [On a class of type II1 factors with Betti numbers invariants. Ann. of Math. (2) 163(3) (2006), 809-899] if and only if the induced action of Gamma on P(g) admits no Gamma-invariant probability measure, where g is the Lie algebra of G. This generalizes results of Burger [Kazhdan constants for SL (3, Z). J. Reine Angew. Math. 413 (1991), 36-67] and Ioana and Shalom [Rigidity for equivalence relations on homogeneous spaces. Groups Geom. Dyn. 7(2) (2013), 403-417]. As an application, we establish rigidity for the action of a class of groups acting by automorphisms on nilmanifolds associated to two-step nilpotent Lie groups.
引用
收藏
页码:2060 / 2076
页数:17
相关论文
共 24 条
[1]  
[Anonymous], 2008, NEW MATH MONOGRAPHS
[2]   Random products of automorphisms of Heisenberg nilmanifolds and Weil's representation [J].
Bekka, Bachir ;
Heu, Jean-Roman .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 :1277-1286
[3]  
BURGER M, 1991, J REINE ANGEW MATH, V413, P36
[4]  
Conway J. B., 2000, A Course in Operator Theory
[5]   A characterization of relative Kazhdan property T for semidirect products with abelian groups [J].
Cornulier, Yves ;
Tessera, Romain .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 :793-805
[6]   Anosov automorphisms on compact nilmanifolds associated with graphs [J].
Dani, SG ;
Mainkar, MG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (06) :2235-2251
[7]   Relative Kazhdan property [J].
De Cornulier, Yves .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2006, 39 (02) :301-333
[8]   Relative property (T) and linear groups [J].
Fernos, Talia .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (06) :1767-1804
[9]   NOTE ON BORELS DENSITY THEOREM [J].
FURSTENBERG, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 55 (01) :209-212
[10]   An uncountable family of nonorbit equivalent actions of Fn [J].
Gaboriau, D ;
Popa, S .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) :547-559