Orbital and electronic entanglement in quantum teleportation schemes

被引:4
作者
Galler, Anna [1 ]
Thunstrom, Patrik [2 ]
机构
[1] Inst Polytech Paris, Ctr Phys Theor, Ecole Polytech, F-91128 Palaiseau, France
[2] Uppsala Univ, Dept Phys & Astron, Mat Theory, S-75120 Uppsala, Sweden
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
关键词
CORRELATED SYSTEMS; COMPUTATION; SPINS;
D O I
10.1103/PhysRevResearch.3.033120
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With progress toward more compact quantum computing architectures, fundamental questions regarding the entanglement of indistinguishable particles need to be addressed. In a solid state device, this quest is naturally connected to the quantum correlations of electrons. Here, we analyze the formation of orbital (mode) and particle entanglement in strongly correlated materials due to the Coulomb interaction between the electrons. We extend the analysis to include spectroscopic measurements of the electronic structure, with a particular focus on the photoemission process. To study the role of the different forms of electronic entanglement, including the effect of particle-number superselection rules, we propose and analyze three different electronic teleportation schemes: quantum teleportation within (i) a molecule on graphene, (ii) a nitrogen-vacancy center, and (iii) a quantum dot array.
引用
收藏
页数:17
相关论文
共 60 条
[1]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[2]   First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory [J].
Anisimov, VI ;
Poteryaev, AI ;
Korotin, MA ;
Anokhin, AO ;
Kotliar, G .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (35) :7359-7367
[3]   Solid-state electron spin lifetime limited by phononic vacuum modes [J].
Astner, T. ;
Gugler, J. ;
Angerer, A. ;
Wald, S. ;
Putz, S. ;
Mauser, N. J. ;
Trupke, M. ;
Sumiya, H. ;
Onoda, S. ;
Isoya, J. ;
Schmiedmayer, J. ;
Mohn, P. ;
Majer, J. .
NATURE MATERIALS, 2018, 17 (04) :313-+
[4]   Entanglement and Particle Identity: A Unifying Approach [J].
Balachandran, A. P. ;
Govindarajan, T. R. ;
de Queiroz, Amilcar R. ;
Reyes-Lega, A. F. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[5]   Entanglement in fermionic systems [J].
Banuls, Mari-Carmen ;
Cirac, J. Ignacio ;
Wolf, Michael M. .
PHYSICAL REVIEW A, 2007, 76 (02)
[6]   A subsystem-independent generalization of entanglement [J].
Barnum, H ;
Knill, E ;
Ortiz, G ;
Somma, R ;
Viola, L .
PHYSICAL REVIEW LETTERS, 2004, 92 (10) :107902-1
[7]   Quantum teleportation by particle-hole annihilation in the Fermi sea [J].
Beenakker, CWJ ;
Kindermann, M .
PHYSICAL REVIEW LETTERS, 2004, 92 (05) :4
[8]   Sub-shot-noise quantum metrology with entangled identical particles [J].
Benatti, F. ;
Floreanini, R. ;
Marzolino, U. .
ANNALS OF PHYSICS, 2010, 325 (04) :924-935
[9]   QUANTUM NON-DEMOLITION MEASUREMENTS [J].
BRAGINSKY, VB ;
VORONTSOV, YI ;
THORNE, KS .
SCIENCE, 1980, 209 (4456) :547-557
[10]   Diamond NV centers for quantum computing and quantum networks [J].
Childress, Lilian ;
Hanson, Ronald .
MRS BULLETIN, 2013, 38 (02) :134-138