Plate type heat exchanger for thermal energy storage and load shifting using phase change material

被引:71
|
作者
Saeed, Rami M. [1 ,2 ]
Schlegel, J. P. [1 ]
Sawafta, R. [2 ]
Kalra, V. [1 ,2 ]
机构
[1] Missouri Univ Sci & Technol, Dept Min & Nucl Engn, 301 W 14th St, Rolla, MO 65409 USA
[2] Phase Change Energy Solut, 120 E Pritchard St, Asheboro, NC 27203 USA
关键词
Thermal energy storage; Pool type nuclear reactors; Data centers; Phase change material; Load shifting; Heat exchanger; SOLAR WATER HEATER; PARAFFIN; PERFORMANCE; ALKANES; SYSTEMS;
D O I
10.1016/j.enconman.2018.12.013
中图分类号
O414.1 [热力学];
学科分类号
摘要
The study presents an experimental investigation of a thermal energy storage vessel for load-shifting purposes. The new heat storage vessel is a plate-type heat exchanger unit with water as the working fluid and a phase change material (PCM) as the energy storage medium. The thermal characteristics of the heat exchanger such as heat transfer coefficient, effectiveness, efficiency, water exit temperature, heat storage rate, total energy storage capacity and storage time were experimentally evaluated as a function of various inlet conditions. The compact parallel plate design showed an enhanced the performance compared to conventional storage systems with an effectiveness up to 83.1% even when a PCM of low thermal conductivity is used. The proposed phase change energy storage system not only can deliver substantial benefits as a thermal energy storage medium, but also provides cost savings in infrastructure, equipment, and maintenance/operations compared to conventional systems.
引用
收藏
页码:120 / 132
页数:13
相关论文
共 50 条
  • [1] Numerical investigation of a plate heat exchanger thermal energy storage system with phase change material
    Taghavi, Mehrdad
    Poikelispaa, Minna
    Agrawal, Vaibhav
    Syrjaia, Seppo
    Joronen, Tero
    JOURNAL OF ENERGY STORAGE, 2023, 61
  • [2] Multi-objective optimization of a plate heat exchanger thermal energy storage with phase change material
    Taghavi, Mehrdad
    Ferrantelli, Andrea
    Joronen, Tero
    JOURNAL OF ENERGY STORAGE, 2024, 89
  • [3] Numerical investigation on latent heat thermal energy storage in a phase change material using a heat exchanger
    Ghosh, Debasree
    Kumar, Prasoon
    Sharma, Siddha
    Guha, Chandan
    Ghose, Joyjeet
    HEAT TRANSFER, 2021, 50 (05) : 4289 - 4308
  • [4] Selection of Phase Change Material for Latent Heat Thermal Energy Storage Using a Hairpin Heat Exchanger: Numerical Study
    Kumari, Pallavi
    Raj, Akash
    Ghosh, Debasree
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2024, 16 (09)
  • [5] Experimental study of the thermal performance of a novel plate type heat exchanger with phase change material
    Lin, Wenzhu
    Zhang, Wenbo
    Ling, Ziye
    Fang, Xiaoming
    Zhang, Zhengguo
    APPLIED THERMAL ENGINEERING, 2020, 178
  • [6] Solar Thermal Energy Storage with Phase Change Material - Heat Exchanger Design and Heat Transfer Analysis
    Duan, Xi-li
    Roul, Josh
    Ryan, Stephan
    Hodder, Skylar
    Stamp, John
    PROCEEDINGS OF THE 2ND 2016 INTERNATIONAL CONFERENCE ON SUSTAINABLE DEVELOPMENT (ICSD 2016), 2017, 94 : 370 - 372
  • [7] CFD approach for the enhancement of thermal energy storage in phase change material charged heat exchanger
    Rana, Sachin
    Zunaid, Mohammad
    Kumar, Rajesh
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 33
  • [8] FLOW AND HEAT TRANSFER PERFORMANCE OF PLATE PHASE CHANGE ENERGY STORAGE HEAT EXCHANGER
    Zhang, Ji-Min
    Ruan, Shi-Ting
    Cao, Jian-Guang
    Xu, Tao
    THERMAL SCIENCE, 2019, 23 (03): : 1989 - 2000
  • [9] Thermal energy storage using a phase change material
    Hamdan, MA
    Elwerr, FA
    SOLAR ENERGY, 1996, 56 (02) : 183 - 189
  • [10] Review on thermal performance of heat exchanger using phase change material
    Das, P.
    Kar, S. P.
    Sarangi, R. K.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (12) : 16208 - 16240