Hopf algebra actions on strongly separable extensions of depth two

被引:22
作者
Kadison, L [1 ]
Nikshych, D
机构
[1] Chalmers Univ Technol, Univ Gothenburg, Matematiskt Centrum, S-41296 Gothenburg, Sweden
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
D O I
10.1006/aima.2001.2003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We bring together ideas in analysis on Hopf *-algebra actions on II1 subfactors of finite Jones index [9, 24] and algebraic characterizations of Frobenius, Galois and cleft Hopf extensions [3, 13, 14] to prove a non-commutative algebraic analogue of the classical theorem: a finite degree field extension is Galois iff it is separable and normal. Suppose N hooked right arrow M is a separable Frobenius extension of k-algebras with trivial centralizer C-M(N) and split as N-bimodules. Let M-1 : = End(M-N) and M-2 : = End(M-1)(M) be the endomorphism algebras in the Jones tower N hooked right arrow M hooked right arrow M-1 hooked right arrow M-2. We place depth 2 conditions on its second centralizers A : = C-M1 (N) and B: = C-M2 (M). We prove that A and B are semisimple Hopf algebras dual to one another. that M-1 is a smash product of M and A. and that M is a B-Galois extension of N. (C) 2001 Academic Press.
引用
收藏
页码:258 / 286
页数:29
相关论文
共 50 条
  • [31] On the depth of subgroups and group algebra extensions
    Boltje, Robert
    Danz, Susanne
    Kuelshammer, Burkhard
    JOURNAL OF ALGEBRA, 2011, 335 (01) : 258 - 281
  • [32] Group algebra extensions of depth one
    Boltje, Robert
    Kuelshammer, Burkhard
    ALGEBRA & NUMBER THEORY, 2011, 5 (01) : 63 - 73
  • [33] Finite Block Theory and Hopf Algebra Actions
    Jeffrey Bergen
    Piotr Grzeszczuk
    Algebras and Representation Theory, 2008, 11 : 1 - 23
  • [34] GORENSTEIN GLOBAL DIMENSIONS FOR HOPF ALGEBRA ACTIONS
    Pan, Q.
    Cai, F.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (02): : 423 - 431
  • [35] Hopf Algebra (Co)actions on Rational Functions
    Kraehmer, Ulrich
    Oni, Blessing Bisola
    ALGEBRAS AND REPRESENTATION THEORY, 2024, 27 (06) : 2187 - 2216
  • [36] Galois correspondence theorem for Hopf algebra actions
    Yanai, T
    Algebraic Structures and Their Representations, 2005, 376 : 393 - 411
  • [37] Finite block theory and Hopf algebra actions
    Bergen, Jeffrey
    Grzeszczuk, Piotr
    ALGEBRAS AND REPRESENTATION THEORY, 2008, 11 (01) : 1 - 23
  • [38] Cocharacter sequences for algebras with Hopf algebra actions
    Berele, A
    JOURNAL OF ALGEBRA, 1996, 185 (03) : 869 - 885
  • [39] TANGENT COHOMOLOGY, HOPF ALGEBRA ACTIONS AND DEFORMATIONS
    GRUNENFELDER, L
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1990, 67 (02) : 125 - 149
  • [40] H-separable rings and their Hopf-Galois extensions
    Jiang, XL
    Xu, YH
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1998, 19 (03) : 311 - 320