Integrated Thermoelectric Cooling for Silicon Photonics

被引:14
作者
Enright, R. [1 ]
Lei, S. [1 ]
Cunningham, G. [1 ]
Mathews, I. [1 ]
Frizzell, R. [1 ]
Shen, A. [2 ]
机构
[1] Nokia Bell Labs, Thermal Management Res Grp, Efficient Energy Transfer ET, Clyde House,Blanchardstown Business & Technol Pk, Dublin D15 Y6NT, Ireland
[2] III V Lab, F-91767 Palaiseau, France
关键词
RECENT PROGRESS; NANOSTRUCTURES; PERFORMANCE; FILMS;
D O I
10.1149/2.0151703jss
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Integrated silicon photonics has emerged as a scalable optoelectronic platform to meet the demands for increased bandwidth in communication networks. However, integration introduces new thermal challenges to achieving the required system performance. Here we present the design of a micro thermoelectric temperature controller integrated around a III-V-on-silicon hybrid waveguide. We briefly outline the thermal requirements to ensure suitable hybrid laser performance for a long reach optical communication application on a silicon photonics platform, namely an active region temperature of <= 54 degrees C. We then develop a multiphysics numerical model of a micro thermoelectric temperature controller integrated around the waveguide and assess our design in terms of ambient operating temperatures of 80 degrees C relevant for an integrated optoelectronic system. Our simulations indicate that state-of-the- art electrodeposited bismuth telluride can achieve the required refrigeration with suitable system design optimization. Despite characteristically low cooling efficiencies compared to a macroscopic thermoelectric module solution, considering overall system energy consumption shows that targeted refrigeration using our integrated thermoelectric design can be beneficial when cooling up to similar to 20% of the overall system thermal load. Our results show the promise of integrated thermoelectric temperature control to meet the thermal requirements for integrated silicon photonics under realistic operating conditions. (C) The Author(s) 2017. Published by ECS.
引用
收藏
页码:N3103 / N3112
页数:10
相关论文
共 33 条
[1]   Achieving high thermal conductivity from AlN films deposited by high-power impulse magnetron sputtering [J].
Aissa, K. Ait ;
Semmar, N. ;
Achour, A. ;
Simon, Q. ;
Petit, A. ;
Camus, J. ;
Boulmer-Leborgne, C. ;
Djouadi, M. A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (35)
[2]   Determination of Electrical Contact Resistivity in Thermoelectric Modules (TEMs) from Module-Level Measurements [J].
Annapragada, S. Ravi ;
Salamon, Todd ;
Kolodner, Paul ;
Hodes, Marc ;
Garimella, Suresh V. .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2012, 2 (04) :668-676
[3]   Thermoelectric power factor of ternary single-crystalline Sb2Te3- and Bi2Te3-based nanowires [J].
Baessler, Svenja ;
Boehnert, Tim ;
Gooth, Johannes ;
Schumacher, Christian ;
Pippel, Eckhard ;
Nielsch, Kornelius .
NANOTECHNOLOGY, 2013, 24 (49)
[4]  
Bottner H., 2006, THERMOELECTRICS HDB
[5]  
Bottner H., 2004, MICROELECTROMECHANIC, V13, P414, DOI DOI 10.1109/JMEMS.2004.828740
[6]   Superlattice-based thin-film thermoelectric modules with high cooling fluxes [J].
Bulman, Gary ;
Barletta, Phil ;
Lewis, Jay ;
Baldasaro, Nicholas ;
Manno, Michael ;
Bar-Cohen, Avram ;
Yang, Bao .
NATURE COMMUNICATIONS, 2016, 7
[7]  
Chowdhury I, 2009, NAT NANOTECHNOL, V4, P235, DOI [10.1038/nnano.2008.417, 10.1038/NNANO.2008.417]
[8]   Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport [J].
da Silva, LW ;
Kaviany, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (10-11) :2417-2435
[9]  
Duan G.-H., 2014, SEL TOP QUANTUM ELEC, V20, P1
[10]   A VISION FOR THERMALLY INTEGRATED PHOTONICS SYSTEMS [J].
Enright, Ryan ;
Lei, Shenghui ;
Nolan, Kevin ;
Mathews, Ian ;
Shen, Alexandre ;
Levaufre, Guillaume ;
Frizzell, Ronan ;
Duan, Guang-Hua ;
Hernon, Domhnaill .
BELL LABS TECHNICAL JOURNAL, 2014, 19 :31-45