Spectral Dynamical Behavior in Passively Mode-Locked Semiconductor Lasers

被引:31
|
作者
Stolarz, P. M. [1 ]
Javaloyes, J. [1 ,2 ]
Mezosi, G. [1 ]
Hou, L. [1 ]
Ironside, C. N. [1 ]
Sorel, M. [1 ]
Bryce, A. C. [1 ]
Balle, S. [3 ]
机构
[1] Univ Glasgow, Sch Engn, Oakfield G12 8LT, Scotland
[2] Univ Illes Balears, Dept Fis, Palma De Mallorca 07122, Spain
[3] Inst Mediterrani Estudis Avancats CSIC UIB, Palma De Mallorca 07071, Spain
来源
IEEE PHOTONICS JOURNAL | 2011年 / 3卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
Semiconductor lasers; mode-locked lasers (MLLs); modeling; fabrication and characterization; ultrafast phenomena; SATURABLE ABSORBER; REFRACTIVE-INDEX; FABRY-PEROT; LOCKING; GAIN; DIODES; ABSORPTION;
D O I
10.1109/JPHOT.2011.2172403
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present an experimental and theoretical study of passive mode-locking in semiconductor Fabry-Perot, quantum-well, lasers operating at around 1550 nm and producing picosecond pulses at a repetition frequency of 40 GHz. The different regimes that occur as the reverse bias voltage applied to the saturable absorber (SA) section or the bias current injected into the amplifier section are characterized both in the time and frequency/wavelength domains. Our results reveal that the lasers display spectral competition between the gain of the amplifier section and the absorption of the SA, with variations of the lasing wavelength up to 25 nm as the bias conditions are changed. These wavelength variations result from the thermal drift of the SA band-edge due to Joule heating by the generated photocurrent and from the competition between two possible lasing regions placed either at the amplifier gain peak or near the band-edge of the SA. The experimental observations are satisfactorily reproduced and explained in the framework of a Traveling Wave Model complemented by a time-domain description of the semiconductor susceptibility.
引用
收藏
页码:1067 / 1082
页数:16
相关论文
共 50 条
  • [41] Supermodes of high-repetition-rate passively mode-locked semiconductor lasers
    Univ of California, Santa Barbara, Santa Barbara, United States
    IEEE J Quantum Electron, 6 (941-952):
  • [42] Intra-cavity dispersion control in passively mode-locked semiconductor lasers
    Strain, Michael J.
    Stolarz, Piotr M.
    Sorel, Marc
    2011 IEEE PHOTONICS CONFERENCE (PHO), 2011, : 749 - 750
  • [43] Supermodes of high-repetition-rate passively mode-locked semiconductor lasers
    Salvatore, RA
    Sanders, S
    Schrans, T
    Yariv, A
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1996, 32 (06) : 941 - 952
  • [44] Narrowing spectral linewidth in passively mode-locked solid-state lasers
    Huang, Tzu Lin
    Li, Shu Ching
    Tsou, Chia Han
    Liang, Hsing Chih
    Huang, K. F.
    Chen, Yung Fu
    OPTICS LETTERS, 2018, 43 (23) : 5753 - 5756
  • [45] Theory of mode-locked semiconductor lasers
    Leegwater, JA
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1996, 32 (10) : 1782 - 1790
  • [46] Advances in Mode-Locked Semiconductor Lasers
    Avrutin, E. A.
    Rafailov, E. U.
    ADVANCES IN SEMICONDUCTOR LASERS, 2012, 86 : 93 - 147
  • [47] Theory of mode-locked semiconductor lasers
    Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    IEEE J Quantum Electron, 10 (1782-1790):
  • [48] MODE-LOCKED SEMICONDUCTOR-LASERS
    DERICKSON, D
    HELKEY, R
    MAR, A
    WASSERBAUER, J
    BOWERS, J
    MICROWAVE JOURNAL, 1993, 36 (02) : 76 - &
  • [49] Noise of mode-locked semiconductor lasers
    Jiang, LA
    Grein, ME
    Haus, HA
    Ippen, EP
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2001, 7 (02) : 159 - 167
  • [50] Mode-locked semiconductor disk lasers
    Gaafar, Mahmoud A.
    Rahimi-Iman, Arash
    Fedorova, Ksenia A.
    Stolz, Wolfgang
    Rafailov, Edik U.
    Koch, Martin
    ADVANCES IN OPTICS AND PHOTONICS, 2016, 8 (03): : 370 - 400