Spectral Dynamical Behavior in Passively Mode-Locked Semiconductor Lasers

被引:31
|
作者
Stolarz, P. M. [1 ]
Javaloyes, J. [1 ,2 ]
Mezosi, G. [1 ]
Hou, L. [1 ]
Ironside, C. N. [1 ]
Sorel, M. [1 ]
Bryce, A. C. [1 ]
Balle, S. [3 ]
机构
[1] Univ Glasgow, Sch Engn, Oakfield G12 8LT, Scotland
[2] Univ Illes Balears, Dept Fis, Palma De Mallorca 07122, Spain
[3] Inst Mediterrani Estudis Avancats CSIC UIB, Palma De Mallorca 07071, Spain
来源
IEEE PHOTONICS JOURNAL | 2011年 / 3卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
Semiconductor lasers; mode-locked lasers (MLLs); modeling; fabrication and characterization; ultrafast phenomena; SATURABLE ABSORBER; REFRACTIVE-INDEX; FABRY-PEROT; LOCKING; GAIN; DIODES; ABSORPTION;
D O I
10.1109/JPHOT.2011.2172403
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present an experimental and theoretical study of passive mode-locking in semiconductor Fabry-Perot, quantum-well, lasers operating at around 1550 nm and producing picosecond pulses at a repetition frequency of 40 GHz. The different regimes that occur as the reverse bias voltage applied to the saturable absorber (SA) section or the bias current injected into the amplifier section are characterized both in the time and frequency/wavelength domains. Our results reveal that the lasers display spectral competition between the gain of the amplifier section and the absorption of the SA, with variations of the lasing wavelength up to 25 nm as the bias conditions are changed. These wavelength variations result from the thermal drift of the SA band-edge due to Joule heating by the generated photocurrent and from the competition between two possible lasing regions placed either at the amplifier gain peak or near the band-edge of the SA. The experimental observations are satisfactorily reproduced and explained in the framework of a Traveling Wave Model complemented by a time-domain description of the semiconductor susceptibility.
引用
收藏
页码:1067 / 1082
页数:16
相关论文
共 50 条
  • [1] Passively mode-locked semiconductor lasers and their applications
    Latkowski, Sylwester
    Surre, Frederic
    Landais, Pascal
    ICTON 2008: PROCEEDINGS OF 2008 10TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, VOL 2, 2008, : 110 - 113
  • [2] TEMPORAL AND SPECTRAL BEHAVIOR OF PASSIVELY MODE-LOCKED DYE-LASERS
    AVRAMOPOULOS, H
    FRENCH, PMW
    NEW, GHC
    OPALINSKA, MM
    TAYLOR, JR
    WILLIAMS, JAR
    OPTICS COMMUNICATIONS, 1990, 76 (3-4) : 229 - 234
  • [3] Passively mode-locked semiconductor lasers - Theory and experiment
    vanRoijen, R
    Koumans, RGMP
    Verbeek, BH
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES IV, 1996, 2693 : 545 - 554
  • [4] Functional mapping for passively mode-locked semiconductor lasers
    Schelte, C.
    Javaloyes, J.
    Gurevich, S. V.
    OPTICS LETTERS, 2018, 43 (11) : 2535 - 2538
  • [5] A Functional Mapping for Passively Mode-Locked Semiconductor Lasers
    Schelte, C.
    Gurevich, S., V
    Javaloyes, J.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [6] Localized pulses in passively mode-locked semiconductor lasers
    Marconi, M.
    Camelin, P.
    Giudici, M.
    Javaloyes, J.
    Chaparro, D.
    Balle, S.
    2016 PHOTONICS NORTH (PN), 2016,
  • [7] A Functional Mapping for Passively Mode-Locked Semiconductor Lasers
    Gurevich, S., V
    Javaloyes, J.
    Schelte, C.
    2020 INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD), 2020, : 63 - 64
  • [8] Design optimization of passively mode-locked semiconductor lasers with intracavity grating spectral filters
    O'Callaghan, Finbarr, 1600, Institute of Electrical and Electronics Engineers Inc., United States (50):
  • [9] Anticolliding design for monolithic passively mode-locked semiconductor lasers
    Javaloyes, J.
    Balle, S.
    OPTICS LETTERS, 2011, 36 (22) : 4407 - 4409
  • [10] High-power passively mode-locked semiconductor lasers
    Häring, R
    Paschotta, R
    Aschwanden, A
    Gini, E
    Morier-Genoud, F
    Keller, U
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (09) : 1268 - 1275