Some results on g-frames in Hilbert spaces

被引:8
作者
Abdollahi, Abdolaziz [1 ]
Rahimi, Elham [1 ]
机构
[1] Shiraz Univ, Dept Math, Coll Sci, Shiraz 71454, Iran
关键词
Frame; g-frame; g-orthonormal basis; tight g-frame; g-Bessel sequence; BASES;
D O I
10.3906/mat-1004-273
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that every g-frame for a Hilbert space H can be represented as a linear combination of two g-orthonormal bases if and only if it is a g-Riesz basis. We also show that every g-frame can be written as a sum of two tight g-frames with g-frame bounds one or a sum of a g-orthonormal basis and a g-Riesz basis for H. We further give necessary and sufficient conditions on g-Bessel sequences {Lambda(i) is an element of L(H, H-i) : i is an element of J} and {Gamma(i) is an element of L(H, H-i) : i is an element of J} and operators L-1, L-2 on H so that {Lambda L-i(1) + Gamma L-i(2) : i is an element of J} is a g-frame for H. We next show that a g-frame can be added to any of its canonical dual g-frame to yield a new g-frame.
引用
收藏
页码:695 / 704
页数:10
相关论文
共 12 条
[1]   Frames and bases of subspaces in Hilbert spaces [J].
Asgari, MS ;
Khosravi, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (02) :541-553
[2]  
Casazza P. G., 2004, CONTEMP MATH-SINGAP, V345, P87, DOI [10.1090/conm/345/06242, DOI 10.1090/conm/345/06242]
[3]   Every frame is a sum of three (but not two) orthonormal bases - and other frame representations [J].
Casazza, PG .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (06) :727-732
[4]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283
[5]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366
[6]  
Fornasier M., 2003, Constructive theory of functions, P275
[7]  
KAUSHIK SK, 2008, INT J CONT MATH SCI, V3, P791
[8]  
Najati A, 2009, B IRAN MATH SOC, V35, P97
[9]  
Najati A, 2008, METHODS FUNCT ANAL T, V14, P271
[10]   Sums of Hilbert space frames [J].
Obeidat, Sofian ;
Samarah, Salti ;
Casazza, Peter G. ;
Tremain, Janet C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) :579-585