Formal solutions of the generalized Dhombres functional equation with value one at zero

被引:1
作者
Tomaschek, Joerg [1 ]
Reich, Ludwig [1 ]
机构
[1] Karl Franzens Univ Graz, Inst Math & Sci Comp, A-8010 Graz, Austria
关键词
Complex functional equations; ANALYTIC SOLUTIONS;
D O I
10.1007/s00010-011-0104-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study formal solutions f of the generalized Dhombres functional equation f(zf(z)) = phi(f(z)). Unlike in the situation where f(0) = w(0) and w(0) is an element of C\E where E denotes the complex roots of 1, which were already discussed, we investigate solutions f where f(0) = 1. To obtain solutions in this case we use new methods which differ from the already existing ones.
引用
收藏
页码:117 / 126
页数:10
相关论文
共 8 条
[1]  
Cartan H., 1966, ELEMENTARE THEORIE A, V112
[2]  
Dhombres J., 1979, Some Aspects of Functional Equations
[3]  
Haneczok J., 2009, GRAZER MATH BER, V353, P96
[4]  
Reich L., 2005, Osterreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, V214, P3
[5]   On generalized Dhombres equations with nonconstant polynomial solutions in the complex plane [J].
Reich, Ludwig ;
Smital, Jaroslav .
AEQUATIONES MATHEMATICAE, 2010, 80 (1-2) :201-208
[6]   Local analytic solutions of the generalized Dhombres functional equation II [J].
Reich, Ludwig ;
Smital, Jaroslav ;
Stefankova, Marta .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (02) :821-829
[7]   Analytic solutions of a general nonlinear functional equations near resonance [J].
Xu, B ;
Zhang, WN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 317 (02) :620-633
[8]   Small divisor problem for an analytic q-difference equation [J].
Xu, Bing ;
Zhang, Weinian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) :694-703