Wigner functions on a lattice

被引:17
作者
Takami, A [1 ]
Hashimoto, T [1 ]
Horibe, M [1 ]
Hayashi, A [1 ]
机构
[1] Univ Fukui, Dept Appl Phys, Fukui 910, Japan
来源
PHYSICAL REVIEW A | 2001年 / 64卷 / 03期
关键词
D O I
10.1103/PhysRevA.64.032114
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Wigner functions on the one-dimensional lattice are studied. Contrary to the previous claim in literature, Wiener functions exist on the lattice with any number of sites, whether it is even or odd. There are infinitely many solutions satisfying the conditions which reasonable Wigner functions should respect. After presenting a heuristic method to obtain Wigner functions, we give the general form of the solutions. Quantum-mechanical expectation values in terms of Wigner functions are also discussed.
引用
收藏
页数:6
相关论文
共 20 条
[1]   A TOMOGRAPHIC APPROACH TO WIGNER FUNCTION [J].
BERTRAND, J ;
BERTRAND, P .
FOUNDATIONS OF PHYSICS, 1987, 17 (04) :397-405
[2]   A STOCHASTIC TREATMENT OF THE DYNAMICS OF AN INTEGER SPIN [J].
COHENDET, O ;
COMBE, P ;
SIRUGUE, M ;
SIRUGUECOLLIN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (13) :2875-2883
[4]   Quantum carpets woven by Wigner functions [J].
Friesch, OM ;
Marzoli, I ;
Schleich, WP .
NEW JOURNAL OF PHYSICS, 2000, 2 :41-411
[5]  
HORIBE M, UNPUB
[6]  
KOBAYASHI R, UNPUB
[7]   QUANTUM-MECHANICS IN PHASE SPACE .1. UNICITY OF WIGNER DISTRIBUTION FUNCTION [J].
KRUGER, JG ;
POFFYN, A .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1976, 85 (01) :84-100
[8]   Discrete Wigner function and quantum-state tomography [J].
Leonhardt, U .
PHYSICAL REVIEW A, 1996, 53 (05) :2998-3013
[9]   QUANTUM-STATE TOMOGRAPHY AND DISCRETE WIGNER FUNCTION [J].
LEONHARDT, U .
PHYSICAL REVIEW LETTERS, 1995, 74 (21) :4101-4105
[10]  
Leonhardt U., 1997, Measuring the quantum state of light