A Triangular Spectral Method for the Stokes Equations

被引:13
作者
Chen, Lizhen [1 ]
Shen, Jie [1 ,2 ]
Xu, Chuanju [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Stokes equations; triangular spectral method; error analysis; ELEMENT METHODS;
D O I
10.4208/nmtma.2011.42s.3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A triangular spectral method for the Stokes equations is developed in this paper. The main contributions are two-fold: First of all, a spectral method using the rational approximation is constructed and analyzed for the Stokes equations in a triangular domain. The existence and uniqueness of the solution, together with an error estimate for the velocity, are proved. Secondly, a nodal basis is constructed for the efficient implementation of the method. These new basis functions enjoy the fully tensorial product property as in a tensor-produce domain. The new triangular spectral method makes it easy to treat more complex geometries in the classical spectral-element framework, allowing us to use arbitrary triangular and tetrahedral elements.
引用
收藏
页码:158 / 179
页数:22
相关论文
共 17 条
[1]  
[Anonymous], 1989, Chebyshev and Fourier Spectral Methods
[2]  
Bernardi C., 1992, Approximations spectrales de problemes aux limites elliptiques
[3]   Approximation on simplices with respect to weighted Sobolev norms [J].
Braess, D ;
Schwab, C .
JOURNAL OF APPROXIMATION THEORY, 2000, 103 (02) :329-337
[4]  
Canuto C., 2006, SPECTRAL METHODS
[5]  
Dubiner M., 1991, Journal of Scientific Computing, V6, P345, DOI 10.1007/BF01060030
[6]   Spectral schemes on triangular elements [J].
Heinrichs, W ;
Loch, BI .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 173 (01) :279-301
[7]   From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex [J].
Hesthaven, JS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (02) :655-676
[8]  
Karniadakis GE, 2005, Spectral/hp Element Methods for CFD
[9]  
Koornwinder TH., 1975, THEORY APPL SPECIAL, P435
[10]  
Li HY, 2010, MATH COMPUT, V79, P1621