Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces

被引:10
作者
Saksman, Eero [1 ]
Soto, Tomas [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Trace theorems; Sobolev spaces; Besov spaces; Triebel-Lizorkin spaces; hyperbolic filling; SETS;
D O I
10.1515/agms-2017-0006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish trace theorems for function spaces defined on general Ahlfors regular metric spaces Z. The results cover the Triebel-Lizorkin spaces and the Besov spaces for smoothness indices s < 1, as well as the first order Hajlasz-Sobolev space M-1,M-p(Z). They generalize the classical results from the Euclidean setting, since the traces of these function spaces onto any closed Ahlfors regular subset F subset of Z are Besov spaces defined intrinsically on F. Our method employs the definitions of the function spaces via hyperbolic fillings of the underlying metric space.
引用
收藏
页码:98 / 115
页数:18
相关论文
共 31 条
[1]  
[Anonymous], 1995, Geometry of Sets and Measures in Euclidean Spaces
[2]  
[Anonymous], 1975, APPROXIMATION FUNCTI
[3]  
Bourdon M, 2003, J REINE ANGEW MATH, V558, P85
[4]   Traces of Besov spaces on fractal h-sets and dichotomy results [J].
Caetano, Antonio M. ;
Haroske, Dorothee D. .
STUDIA MATHEMATICA, 2015, 231 (02) :117-147
[5]   DECOMPOSITION OF BESOV-SPACES [J].
FRAZIER, M ;
JAWERTH, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (04) :777-799
[6]   A DISCRETE TRANSFORM AND DECOMPOSITIONS OF DISTRIBUTION SPACES [J].
FRAZIER, M ;
JAWERTH, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :34-170
[7]  
Gagliardo E., 1957, Rend. Sem. Mat. Univ. Padova, V27, P284
[8]   Characterizations of Besov and Triebel-Lizorkin spaces on metric measure spaces [J].
Gogatishvili, Amiran ;
Koskela, Pekka ;
Zhou, Yuan .
FORUM MATHEMATICUM, 2013, 25 (04) :787-819
[9]   Interpolation properties of Besov spaces defined on metric spaces [J].
Gogatishvili, Amiran ;
Koskela, Pekka ;
Shanmugalingam, Nageswari .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (02) :215-231
[10]  
Hajasz P, 2003, CONT MATH, V338, P173