A semidefinite representation for some minimum cardinality problems.

被引:12
作者
d'Aspremont, A [1 ]
机构
[1] Stanford Univ, Informat Syst Lab, Stanford, CA 94305 USA
来源
42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS | 2003年
关键词
semidefinite programming; sums of squares; rank minimization; K-moment problem;
D O I
10.1109/CDC.2003.1272418
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using techniques developed in [1], we show that some minimum cardinality problems subject to linear inequalities can be represented as finite sequences of semidefinite programs. In particular, we provide a semidefinite representation and a set of successively finer relaxations for the minimum rank problem on positive semidefinite matrices and for the minimum cardinality problem subject to linear inequalities.
引用
收藏
页码:4985 / 4990
页数:6
相关论文
共 23 条
[1]  
Berg C., 1980, MOMENTS MATH, P110
[3]  
Choi MD, 1995, Am. Math. Soc., V58, P103
[4]   The truncated complex K-moment problem [J].
Curto, RE ;
Fialkow, LA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (06) :2825-2855
[5]  
El Ghaoui L., 1993, EUR CONTR C, P1176
[6]  
FAZEL M, 2000, AM CONTR C SEPT 2000
[7]  
GATERMANN K, 2002, MATHAC0211450 ETH ZU
[8]   Low-authority controller design by means of convex optimization [J].
Hassibi, A ;
How, JP ;
Boyd, SP .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1999, 22 (06) :862-872
[9]   An explicit equivalent positive semidefinite program for nonlinear 0-1 programs [J].
Lasserre, JB .
SIAM JOURNAL ON OPTIMIZATION, 2002, 12 (03) :756-769
[10]   Global optimization with polynomials and the problem of moments [J].
Lasserre, JB .
SIAM JOURNAL ON OPTIMIZATION, 2001, 11 (03) :796-817