Neural Network Classification Method for Solution of the Problem of Monitoring Theremoval of the Theranostics Nanocomposites from an Organism

被引:1
作者
Sarmanova, Olga [1 ]
Burikov, Sergey [1 ,2 ]
Dolenko, Sergey [2 ]
von Haartman, Eva [3 ]
Sen Karaman, Didem [3 ]
Isaev, Igor [2 ]
Laptinskiy, Kirill [1 ,2 ]
Rosenholm, Jessica M. [3 ]
Dolenko, Tatiana [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Phys Dept, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia
[3] Abo Akad Univ, Fac Sci & Engn, Turku, Finland
来源
BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES (BICA) FOR YOUNG SCIENTISTS | 2018年 / 636卷
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
Artificial neural network; Inverse problem; Fluorescent spectroscopy; Carbon nanocomposite; Drug carrier;
D O I
10.1007/978-3-319-63940-6_24
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
In this study artificial neural networks were used for elaboration of the new method of monitoring of excreted nanocomposites-drug carriers and their components in human urine by their fluorescence spectra. The problem of classification of nanocomposites consisting of fluorescence carbon dots covered by copolymers and ligands of folic acid in urine was solved. A set of different architectures of neural networks and 4 alternative procedures of the selection of significant input features: by cross-correlation, cross-entropy, standard deviation and by analysis of weights of a neural network were used. The best solution of the problem of classification of nanocomposites and their components in urine provides the perceptron with 8 neurons in a single hidden layer, trained on a set of significant input features selected using cross-correlation. The percentage of correct recognition averaged over all five classes, is 72.3%.
引用
收藏
页码:173 / 179
页数:7
相关论文
共 8 条
[1]   The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy [J].
Doane, Tennyson L. ;
Burda, Clemens .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (07) :2885-2911
[2]   Optical imaging of fluorescent carbon biomarkers using artificial neural networks [J].
Dolenko, Tatiana A. ;
Burikov, Sergey A. ;
Vervald, Alexey M. ;
Vlasov, Igor I. ;
Dolenko, Sergey A. ;
Laptinskiy, Kirill A. ;
Rosenholm, Jessica M. ;
Shenderova, Olga A. .
JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (11)
[3]   Significant Feature Selection in Neural Network Solution of an Inverse Problem in Spectroscopy [J].
Efitorov, Alexander ;
Burikov, Sergey ;
Dolenko, Tatiana ;
Laptinskiy, Kirill ;
Dolenko, Sergey .
4TH INTERNATIONAL YOUNG SCIENTIST CONFERENCE ON COMPUTATIONAL SCIENCE, 2015, 66 :93-102
[4]   Review and comparison of methods to study the contribution of variables in artificial neural network models [J].
Gevrey, M ;
Dimopoulos, L ;
Lek, S .
ECOLOGICAL MODELLING, 2003, 160 (03) :249-264
[5]   Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy [J].
Hong, Guosong ;
Diao, Shuo ;
Antaris, Alexander L. ;
Dai, Hongjie .
CHEMICAL REVIEWS, 2015, 115 (19) :10816-10906
[6]   Role of folate in colon cancer development and progression [J].
Kim, YI .
JOURNAL OF NUTRITION, 2003, 133 (11) :3731S-3739S
[7]   Monitoring of nanodiamonds in human urine using artificial neural networks [J].
Laptinskiy, Kirill ;
Burikov, Sergey ;
Dolenko, Sergey ;
Efitorov, Alexander ;
Sarmanova, Olga ;
Shenderova, Olga ;
Vlasov, Igor ;
Dolenko, Tatiana .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (10) :2614-2622
[8]   Functionalization of graphene oxide nanostructures improves photoluminescence and facilitates their use as optical probes in preclinical imaging [J].
Prabhakar, Neeraj ;
Nareoja, Tuomas ;
von Haartman, Eva ;
Sen Karaman, Didem ;
Burikov, Sergey A. ;
Dolenko, Tatiana A. ;
Deguchi, Takahiro ;
Mamaeva, Veronika ;
Hanninen, Pekka E. ;
Vlasov, Igor I. ;
Shenderova, Olga A. ;
Rosenholm, Jessica M. .
NANOSCALE, 2015, 7 (23) :10410-10420