Diabetes Mellitus Affected Patients Classification and Diagnosis through Machine Learning Techniques

被引:63
|
作者
Mercaldo, Francesco [1 ]
Nardone, Vittoria [2 ]
Santone, Antonella [2 ]
机构
[1] Natl Res Council Italy CNR, Inst Informat & Telemat, Pisa, Italy
[2] Univ Sannio, Dept Engn, Benevento, Italy
来源
KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS | 2017年 / 112卷
关键词
health; machine learning; deep learning; classification; PIMA-INDIANS; PLASMA-GLUCOSE; RENAL-DISEASE; POPULATION;
D O I
10.1016/j.procs.2017.08.193
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Medical studies demonstrated that diabetes pathology is increasing in last decades and the trend do not tends to stop. In order to help and to accelerate the diagnosis of diabetes in this paper we propose a method able to classify patients affected by diabetes using a set of characteristic selected in according to World Health Organization criteria. Evaluating real-world data using state of the art machine learning algorithms, we obtain a precision value equal to 0.770 and a recall equal to 0.775 using the HoeffdingTree algorithm. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:2519 / 2528
页数:10
相关论文
共 50 条
  • [1] DIAGNOSIS OF DIABETES MELLITUS USING MACHINE LEARNING TECHNIQUES FOR EFFICIENT REVIEW
    Thiyagarajan, C.
    Vaideghy, A.
    Sridevi, V
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (02) : 4184 - 4187
  • [2] Decision Support System for Diabetes Mellitus through Machine Learning Techniques
    Rashid, Tarik A.
    Abdulla, Saman. M.
    Abdulla, Rezhna. M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (07) : 170 - 178
  • [3] Utilizing Various Machine Learning Techniques for Diabetes Mellitus Feature Selection and Classification
    Sheta, Alaa
    Elashmawi, Walaa H.
    Al-Qerem, Ahmad
    Othman, Emad S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 1372 - 1384
  • [4] Early diagnosis of diabetes mellitus using data mining and machine learning techniques
    Deepa, K.
    Kumar, C. Ranjeeth
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 3999 - 4011
  • [5] Predicting Diabetes Mellitus With Machine Learning Techniques
    Zou, Quan
    Qu, Kaiyang
    Luo, Yamei
    Yin, Dehui
    Ju, Ying
    Tang, Hua
    FRONTIERS IN GENETICS, 2018, 9
  • [6] Diabetes Classification Using Machine Learning Techniques
    Phongying, Methaporn
    Hiriote, Sasiprapa
    COMPUTATION, 2023, 11 (05)
  • [7] Analysis of Diabetes mellitus using Machine Learning Techniques
    Bhat, Salliah Shafi
    Selvam, Venkatesan
    Ansari, Gufran Ahmad
    Ansari, Mohd Dilshad
    2022 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA, SIGNAL PROCESSING AND COMMUNICATION TECHNOLOGIES (IMPACT), 2022,
  • [8] Classification of Diabetes Mellitus Disease using Machine Learning
    Mohamed, Mahmoud Adnan
    Nassif, Ali Bou
    Al-Shabi, Mohammad
    SMART BIOMEDICAL AND PHYSIOLOGICAL SENSOR TECHNOLOGY XIX, 2022, 12123
  • [9] Diagnosis of Diabetes Mellitus Using Extreme Learning Machine
    Pangaribuan, Jefri Junifer
    Suharjito
    2014 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY SYSTEMS AND INNOVATION (ICITSI), 2014, : 33 - 38
  • [10] Preemptive Diagnosis of Diabetes Mellitus Using Machine Learning
    Alassaf, Reem A.
    Alsulaim, Khawla A.
    Alroomi, Noura Y.
    Alsharif, Nouf S.
    Aljubeir, Mishael F.
    Olatunji, Sunday O.
    Alahmadi, Alaa Y.
    Imran, Mohammed
    Alzahrani, Rahma A.
    Alturayeif, Nora S.
    2018 21ST SAUDI COMPUTER SOCIETY NATIONAL COMPUTER CONFERENCE (NCC), 2018,