Experimental analysis of spatio-temporal behavior of anodic dead-end mode operated polymer electrolyte fuel cell

被引:39
作者
Manokaran, A. [1 ,2 ]
Pushpavanam, S. [2 ]
Sridhar, P. [1 ]
Pitchumani, S. [1 ]
机构
[1] CSIR Cent Electrochem Res Inst, Madras Unit, Madras 600113, Tamil Nadu, India
[2] Indian Inst Technol, Dept Chem Engn, Madras 600036, Tamil Nadu, India
关键词
Anodic dead-end mode; Nitrogen accumulation; Spatio-temporal current distribution; PEMFC; ACCUMULATION;
D O I
10.1016/j.jpowsour.2011.06.103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
During the anodic dead-end mode operation of fuel cells, the inert gases (nitrogen and water) present in the cathode side gas channel permeate to the anode side and accumulate in the anode gas channel. The inert gas accumulation in the anode decreases the fuel cell performance by impeding the access of hydrogen to the catalyst. The performance of fuel cell under potentiostatic dead-end mode operation is shown to have three distinct regions viz, time lag region, transient current region and a steady state current region. A current distribution measurement setup is used to capture the evolution of the current distribution as a function of time and space. Co- and counter-flow operations of dead-end mode confirm the propagation of inert gas from the dead-end of anode channel to the inlet of anode. Experiments with different oxidants, oxygen and air, under dead-end mode confirm that nitrogen which permeates from cathode to anode causes the performance drop of the fuel cell. For different starting current densities of 0.15 A cm(-2), 0.3 A cm(-2) and 0.6A cm(-2) the inert gas occupies 35%, 45% and 57%, respectively of anode channel volume at the end of 60 min of dead-end mode operation. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:9931 / 9938
页数:8
相关论文
共 13 条
[1]   Characterization of nitrogen gas crossover through the membrane in proton-exchange membrane fuel cells [J].
Baik, Kyung Don ;
Kim, Min Soo .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (01) :732-739
[2]  
Barbir F, 2005, SUSTAIN WORLD SER, P1
[3]   Polarization study of a PEMFC with four reference electrodes at hydrogen starvation conditions [J].
Baumgartner, W. R. ;
Parz, P. ;
Fraser, S. D. ;
Wallnoefer, E. ;
Hacker, V. .
JOURNAL OF POWER SOURCES, 2008, 182 (02) :413-421
[4]   PEFC Stack Operating in Anodic Dead End Mode [J].
Dumercy, L. ;
Pera, M-C ;
Glises, R. ;
Hissel, D. ;
Hamandi, S. ;
Badin, F. ;
Kauffmann, J-M .
FUEL CELLS, 2004, 4 (04) :352-357
[5]   Power-generation characteristics of hydrogen fuel cell with dead-end system [J].
Hikita, S ;
Nakatani, F ;
Yamane, K ;
Takagi, Y .
JSAE REVIEW, 2002, 23 (02) :177-182
[6]   Operation of a planar free-breathing PEMFC in a dead-end mode [J].
Himanen, Olli ;
Hottinen, Tero ;
Tuurala, Saara .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (05) :891-894
[7]   Characterization of gas crossover and its implications in PEM fuel cells [J].
Kocha, SS ;
Yang, JDL ;
Yi, JS .
AICHE JOURNAL, 2006, 52 (05) :1916-1925
[8]  
Lee Y., 2006, ECS T, V3, P871
[9]   ACCUMULATION AND CONTINUOUS REMOVAL OF IMPURITIES IN FUEL CELLS .1. ONE-DIMENSIONAL MODEL [J].
LYCZKOWS.RW ;
GIDASPOW, D .
AICHE JOURNAL, 1971, 17 (05) :1208-&
[10]  
Mittelsteadt C., 2005, P 207 EL SOC M GAS P