Deterministic coherence resonance analysis of coupled chaotic oscillators: fractional approach

被引:5
作者
Gilardi-Velazquez, H. E. [1 ,2 ]
Echenausia-Monroy, J. L. [3 ]
Jaimes-Reategui, R. [2 ]
Garcia-Lopez, J. H. [2 ]
Campos, Eric [4 ]
Huerta-Cuellar, G. [2 ]
机构
[1] Univ Panamericana, Fac Ingn, Josemaria Escr Balaguer 101, Aguascalientes 20290, Aguascalientes, Mexico
[2] Univ Guadalajara, Ctr Univ Lagos, Dynam Syst Lab, CULagos, Enrique Diaz de Leon 1144, Lagos De Moreno 47460, Jalisco, Mexico
[3] CICESE, Ctr Sci Res & Higher Educ Ensenada, Appl Phys Div, Carr Ensenada Tijuana 3918, Ensenada 22860, BC, Mexico
[4] Inst Sci & Technol Res San Luis Potosi, Div Appl Math, Camino Presa San Jose 2055,Lomas Secc 4, San Luis Potosi 78216, Mexico
关键词
Fractional-order systems; Nonlinear dynamics; Coupled systems; Chaotic systems; Deterministic resonance; STOCHASTIC RESONANCE; SYNCHRONIZATION; CALCULUS;
D O I
10.1016/j.chaos.2022.111919
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the stabilization of chaos by chaos has attracted the attention of researchers. A small deviation between the natural frequencies of unidirectionally coupled chaotic oscillators can cause the emerge of a coherence resonance in the slave oscillator for a given coupling strength. In this work, we investigate the phenomenon of coherence resonance for a coupled Rossler system under the influence of fractional operators in the frequency response of the slave oscillator. Based on the analysis of the fractional Rossler system, we determine a range of fractional orders in which the system retains its instability, and an analysis of the frequency response of the system to changes in natural frequency is developed. Finally, the frequency response of the slave system to changes in the fractional derivative order, the natural frequency of the master system, and the coupling strength is analyzed, and how these changes promote the occurrence of coherence resonance is examined.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 37 条
[1]  
[Anonymous], 2012, CHAOTIC MODELING SIM
[2]   Experimental deterministic coherence resonance [J].
Avila, JFM ;
Cavalcante, HLDS ;
Leite, JRR .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :144101-1
[3]   Coherence resonance in neuronal populations: Mean-field versus network model [J].
Baspinar, Emre ;
Schuelen, Leonhard ;
Olmi, Simona ;
Zakharova, Anna .
PHYSICAL REVIEW E, 2021, 103 (03)
[4]   Chaos suppression through asymmetric coupling [J].
Bragard, J. ;
Vidal, G. ;
Mancini, H. ;
Mendoza, C. ;
Boccaletti, S. .
CHAOS, 2007, 17 (04)
[5]   Delay-induced deterministic resonance of chaotic dynamics [J].
Dal Bosco, A. Karsaklian ;
Wolfersberger, D. ;
Sciamanna, M. .
EPL, 2013, 101 (02)
[6]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+
[7]   A physical interpretation of fractional-order-derivatives in a jerk system: Electronic approach [J].
Echenausia-Monroy, J. L. ;
Gilardi-Velazquez, H. E. ;
Jaimes-Reategui, R. ;
Aboites, V ;
Huerta-Cuellar, G. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 90
[8]   Multistability Emergence through Fractional-Order-Derivatives in a PWL Multi-Scroll System [J].
Echenausia-Monroy, Jose Luis ;
Huerta-Cuellar, Guillermo ;
Jaimes-Reategui, Rider ;
Garcia-Lopez, Juan Hugo ;
Aboites, Vicente ;
Cassal-Quiroga, Bahia Betzavet ;
Gilardi-Velazquez, Hector Eduardo .
ELECTRONICS, 2020, 9 (06)
[9]   Stochastic resonance: A chaotic dynamics approach [J].
Franaszek, M ;
Simiu, E .
PHYSICAL REVIEW E, 1996, 54 (02) :1298-1304
[10]   Stochastic resonance [J].
Gammaitoni, L ;
Hanggi, P ;
Jung, P ;
Marchesoni, F .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :223-287