In this paper, we introduce the linear self-attracting diffusion driven by a weighted fractional Brownian motion with weighting exponent a > -1 and Hurst index vertical bar b vertical bar < a + 1, 0 < b < 1, which is analogous to the linear fractional self-attracting diffusion. For the 1-dimensional process we study its convergence and the corresponding weighted local time. As a related problem, we also obtain the renormalized intersection local time exists in L-2 if max {a(1) + b(1), a(2) + b(2)} < 0.
机构:
Univ Henri Poincare, Inst Math Elie Cartan, F-54506 Vandoeuvre Les Nancy, FranceUniv Henri Poincare, Inst Math Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
Herrmann, S
;
Roynette, B
论文数: 0引用数: 0
h-index: 0
机构:
Univ Henri Poincare, Inst Math Elie Cartan, F-54506 Vandoeuvre Les Nancy, FranceUniv Henri Poincare, Inst Math Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
机构:
Univ Henri Poincare, Inst Math Elie Cartan, F-54506 Vandoeuvre Les Nancy, FranceUniv Henri Poincare, Inst Math Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
Herrmann, S
;
Roynette, B
论文数: 0引用数: 0
h-index: 0
机构:
Univ Henri Poincare, Inst Math Elie Cartan, F-54506 Vandoeuvre Les Nancy, FranceUniv Henri Poincare, Inst Math Elie Cartan, F-54506 Vandoeuvre Les Nancy, France