Asymptotic normality of the posterior in relative entropy

被引:18
作者
Clarke, BS [1 ]
机构
[1] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
asymptotic normality; posterior density; relative entropy;
D O I
10.1109/18.746784
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show that the relative entropy between a posterior density formed from a smooth likelihood and prior and a limiting normal form tends to zero in the independent and identically distributed case. The mode of convergence is in probability and in mean. Applications to codelengths in stochastic complexity and to sample size selection are briefly discussed.
引用
收藏
页码:165 / 176
页数:12
相关论文
共 29 条
[1]  
[Anonymous], 1984, CAN J STAT
[2]  
Barron A. R., 1985, THESIS STANFORD U ST
[3]   DISTRIBUTION ESTIMATION CONSISTENT IN TOTAL VARIATION AND IN 2 TYPES OF INFORMATION DIVERGENCE [J].
BARRON, AR ;
GYORFI, L ;
VANDERMEULEN, EC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (05) :1437-1454
[4]   ENTROPY AND THE CENTRAL-LIMIT-THEOREM [J].
BARRON, AR .
ANNALS OF PROBABILITY, 1986, 14 (01) :336-342
[5]   MINIMUM COMPLEXITY DENSITY-ESTIMATION [J].
BARRON, AR ;
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (04) :1034-1054
[6]  
BARRON AR, 1994, P 1994 IEEE IMS WORK, P39
[7]   SOME CONTRIBUTIONS TO ASYMPTOTIC THEORY OF BAYES SOLUTIONS [J].
BICKEL, PJ ;
YAHAV, JA .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 11 (04) :257-&
[8]   ASYMPTOTIC NORMALITY OF SOME HERMITIAN-FORMS WITH COMPLEX NOISY DATA [J].
BROUAYE, F .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (01) :236-239
[9]   BOUNDS ON APPROXIMATE STEEPEST DESCENT FOR LIKELIHOOD MAXIMIZATION IN EXPONENTIAL-FAMILIES [J].
CESABIANCHI, N ;
KROGH, A ;
WARMUTH, MK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (04) :1215-1218