Measurement-device-independent quantum key distribution with classical Bob and no joint measurement

被引:4
作者
He, Guang Ping [1 ]
机构
[1] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China
关键词
Quantum cryptography; Communication security; Quantum communication; Quantum key distribution; Measurement-device-independent; CRYPTOGRAPHY; STATE; SECURITY; SYSTEMS;
D O I
10.1007/s11128-021-03385-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurement-device-independent quantum key distribution (MDI-QKD) provides a method for secret communication whose security does not rely on trusted measurement devices. In all existing MDI-QKD protocols, the participant Charlie has to perform Bell state measurement or other joint measurements. Here, we propose an MDI-QKD protocol which requires individual measurements only. Meanwhile, all operations of the receiver Bob are classical, without the need for preparing and measuring quantum systems. Thus, the implementation of the protocol has a lower technical requirement on Bob and Charlie.
引用
收藏
页数:15
相关论文
共 50 条
[21]   Cryptanalysis and improvement of the measurement-device-independent quantum key distribution with hyper-encoding [J].
Lin, Jason ;
Tsai, Chia-Wei ;
Yang, Chun-Wei .
MODERN PHYSICS LETTERS A, 2022, 37 (31)
[22]   Measurement-Device-Independent Quantum Key Distribution with Two-Way Local Operations and Classical Communications [J].
Tan, Yong-Gang ;
Liu, Qiang .
CHINESE PHYSICS LETTERS, 2016, 33 (09)
[23]   Measurement-device-independent quantum key distribution with quantum memories [J].
Abruzzo, Silvestre ;
Kampermann, Hermann ;
Bruss, Dagmar .
PHYSICAL REVIEW A, 2014, 89 (01)
[24]   Unidimensional continuous-variable measurement-device-independent quantum key distribution [J].
Bai, Dongyun ;
Huang, Peng ;
Zhu, Yiqun ;
Ma, Hongxin ;
Xiao, Tailong ;
Wang, Tao ;
Zeng, Guihua .
QUANTUM INFORMATION PROCESSING, 2020, 19 (02)
[25]   Measurement-device-independent quantum key distribution: from idea towards application [J].
Valivarthi, Raju ;
Lucio-Martinez, Itzel ;
Chan, Philip ;
Rubenok, Allison ;
John, Caleb ;
Korchinski, Daniel ;
Duffin, Cooper ;
Marsili, Francesco ;
Verma, Varun ;
Shaw, Mathew D. ;
Stern, Jeffrey A. ;
Nam, Sae Woo ;
Oblak, Daniel ;
Zhou, Qiang ;
Slater, Joshua A. ;
Tittel, Wolfgang .
JOURNAL OF MODERN OPTICS, 2015, 62 (14) :1141-1150
[26]   Measurement-device-independent quantum key distribution protocols against collective noise [J].
He, Yefeng ;
Ma, Wenping .
MODERN PHYSICS LETTERS B, 2021, 35 (11)
[27]   Measurement-device-independent quantum key distribution with heralded pair coherent state [J].
Wang, Xiang ;
Wang, Yang ;
Chen, Rui-Ke ;
Zhou, Chun ;
Li, Hong-Wei ;
Bao, Wan-Su .
LASER PHYSICS, 2016, 26 (06)
[28]   Beating the repeaterless bound with adaptive measurement-device-independent quantum key distribution [J].
Trenyi, Robert ;
Azuma, Koji ;
Curty, Marcos .
NEW JOURNAL OF PHYSICS, 2019, 21 (11)
[29]   Measurement-device-independent semiquantum key distribution [J].
He, Jinjun ;
Li, Qin ;
Wu, Chunhui ;
Chan, Wai Hong ;
Zhang, Shengyu .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (02)
[30]   Higher key rate of measurement-device-independent quantum key distribution through joint data processing [J].
Jiang, Cong ;
Yu, Zong-Wen ;
Hu, Xiao-Long ;
Wang, Xiang-Bin .
PHYSICAL REVIEW A, 2021, 103 (01)