Non-autonomous Svinolupov-Jordan KdV systems

被引:8
作者
Gürses, M [1 ]
Karasu, A
Turhan, R
机构
[1] Bilkent Univ, Fac Sci, Dept Math, TR-06533 Ankara, Turkey
[2] Middle E Tech Univ, Fac Arts & Sci, Dept Phys, TR-06531 Ankara, Turkey
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 28期
关键词
D O I
10.1088/0305-4470/34/28/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Non-autonomous Svinolupov-Jordan KdV systems are considered. The integrability criteria of such systems are associated with the existence of recursion operators. A new non-autonomous KdV system and its recursion operator is obtained for all N. The examples for N = 2 and 3 are studied in detail. Some possible transformations which map some systems to autonomous ones are also discussed.
引用
收藏
页码:5705 / 5711
页数:7
相关论文
共 19 条
[1]   ON NON-AUTONOMOUS KDV-FLOWS [J].
ABELLANAS, L ;
GALINDO, A .
PHYSICS LETTERS A, 1985, 108 (03) :123-125
[2]   GENERALIZED KDV AND MKDV EQUATIONS ASSOCIATED WITH SYMMETRICAL-SPACES [J].
ATHORNE, C ;
FORDY, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (06) :1377-1386
[3]  
Bluman G. W., 1989, Symmetries and Differential Equations
[4]   SOLUTION BY SPECTRAL-TRANSFORM METHOD OF A NON-LINEAR EVOLUTION EQUATION INCLUDING AS A SPECIAL CASE CYLINDRICAL KDV EQUATION [J].
CALOGERO, F ;
DEGASPERIS, A .
LETTERE AL NUOVO CIMENTO, 1978, 23 (04) :150-154
[5]   INTEGRABLE NONLINEAR EVOLUTION-EQUATIONS WITH TIME-DEPENDENT COEFFICIENTS [J].
FUCHSSTEINER, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (11) :5140-5158
[6]  
Gürses M, 1999, J MATH PHYS, V40, P6473, DOI 10.1063/1.533102
[7]  
Gurses M, 1998, J MATH PHYS, V39, P2103, DOI 10.1063/1.532278
[8]   Degenerate Svinolupov KdV systems [J].
Gurses, M ;
Karasu, A .
PHYSICS LETTERS A, 1996, 214 (1-2) :21-26
[9]  
GURSES M, 2001, UNPUB TIME DEPENDENT
[10]   EXACT SOLUTIONS TO THE EQUATION DESCRIBING CYLINDRICAL SOLITONS [J].
HIROTA, R .
PHYSICS LETTERS A, 1979, 71 (5-6) :393-394