The cauchy problem for hyperbolic systems with multiple characteristics

被引:7
作者
Benvenuti, S [1 ]
Bernardi, E [1 ]
Bove, A [1 ]
机构
[1] Univ Bologna, I-40126 Bologna, Italy
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 1998年 / 122卷 / 08期
关键词
D O I
10.1016/S0007-4497(99)80006-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we give necessary conditions for the well-posedness of the Cauchy problem for a class of first order differential hyperbolic N x N systems, L = L-1(x, D-x) + L-0 (x), with multiple characteristics. Let p be characteristic point of h (x, xi) = det L-1 (x, xi) of multiplicity r; we assume that rank L-1 (p) = N - 1. Our result is that there is a scalar hyperbolic differential operator P with principal symbol h, such that, if the Cauchy problem for L is correctly posed, then P must satisfy the Ivrii-Petkov conditions at p of multiplicity r. (C) Elsevier, Paris.
引用
收藏
页码:603 / 634
页数:32
相关论文
共 20 条
[1]  
Arnol'd VI., 1971, Math. Surveys, V26, P101
[2]  
BENVENUTI S, 1998, IN PRESS OSAKA J MAT
[3]  
BERNARDI E, 1992, OSAKA J MATH, V29, P129
[4]  
BERZIN R, 1972, CR ACAD SCI A MATH, V275, P1091
[5]  
BERZIN R, 1974, J MATH PURE APPL, V58, P165
[6]  
DEMAY Y, 1977, J MATH PURE APPL, V56, P393
[7]  
IVRII VY, 1974, USP MAT NAUK, V29, P3
[8]  
IVRII YV, 1993, ENCYCL MATH SCI, V33, P149
[9]  
Kajitani K., 1979, PULL RES I MATH SCI, V15, P519, DOI [10.2977/prims/1195188183, DOI 10.2977/PRIMS/1195188183]
[10]  
MATSUMOTO W, 1990, LEVI CONDITIONS 1ST