Differential modular forms on Shimura curves, I

被引:8
作者
Buium, A [1 ]
机构
[1] Univ New Mexico, Albuquerque, NM 87131 USA
基金
美国国家科学基金会;
关键词
isogeny; modular forms; Shimura curves;
D O I
10.1023/B:COMP.0000005081.66740.9a
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The quotient of a Shimura curve by the isogeny equivalence relation is not an object of algebraic geometry. The paper shows how this quotient space becomes a geometric object in a more general geometry obtained from 'usual algebraic geometry', by adjoining a new operation; this operation looks like a 'Fermat quotient' and should be viewed as an arithmetic analogue of usual derivations.
引用
收藏
页码:197 / 237
页数:41
相关论文
共 30 条
[1]  
[Anonymous], ARITHMETIC GEOMETRY
[2]   Siegel differential modular forms [J].
Barcau, M ;
Buium, A .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2002, 2002 (28) :1457-1503
[3]  
BARCAU M, IN PRESS COMPOSITIO
[4]  
BOUTOT JF, 1991, ASTERISQUE, P45
[5]   DIFFERENTIAL CHARACTERS OF ABELIAN-VARIETIES OVER P-ADIC FIELDS [J].
BUIUM, A .
INVENTIONES MATHEMATICAE, 1995, 122 (02) :309-340
[6]  
Buium A, 2000, J REINE ANGEW MATH, V520, P95
[7]   Geometry of p-jets [J].
Buium, A .
DUKE MATHEMATICAL JOURNAL, 1996, 82 (02) :349-367
[8]  
Buium A., 1992, DIFFERENTIAL ALGEBRA
[9]  
BUIUM A, GEOMETRY FERMAT ADEL
[10]  
BUIUM A, DIFFERENTIAL ORBIT S, V1