Identification of gene expression profiles in myocardial infarction: a systematic review and meta-analysis

被引:16
作者
Kontou, Panagiota [1 ]
Pavlopoulou, Athanasia [2 ]
Braliou, Georgia [1 ]
Bogiatzi, Spyridoula [1 ]
Dimou, Niki [3 ]
Bangalore, Sripal [4 ]
Bagos, Pantelis [1 ,5 ]
机构
[1] Univ Thessaly, Dept Comp Sci & Biomed Informat, Lamia 35131, Greece
[2] Izmir Biomed & Genome Inst, Dokuz Eylul Univ Hlth Campus, TR-35340 Izmir, Turkey
[3] Univ Ioannina, Sch Med, Dept Hyg & Epidemiol, Stavros Niarchos Av, GR-45110 Ioannina, Greece
[4] NYU, Sch Med, New York, NY 10016 USA
[5] Univ Thessaly, Papasiopoulou 2-4, Lamia 35131, Greece
关键词
Myocardial infarction; Gene-expression; Meta-analysis; Differentially expressed genes; Biomarkers; Risk prediction; GRANULOCYTE CHEMOTACTIC PROTEIN-2; CORONARY-ARTERY-DISEASE; FALSE DISCOVERY RATE; NETWORK ANALYSIS; MICROARRAY DATA; HEART-DISEASE; ASSOCIATION; PREDICTION; BIOMARKERS; CHEMOKINES;
D O I
10.1186/s12920-018-0427-x
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Myocardial infarction (MI) is a multifactorial disease with complex pathogenesis, mainly the result of the interplay of genetic and environmental risk factors. The regulation of thrombosis, inflammation and cholesterol and lipid metabolism are the main factors that have been proposed thus far to be involved in the pathogenesis of MI. Traditional risk-estimation tools depend largely on conventional risk factors but there is a need for identification of novel biochemical and genetic markers. The aim of the study is to identify differentially expressed genes that are consistently associated with the incidence myocardial infarction (MI), which could be potentially incorporated into the traditional cardiovascular diseases risk factors models. Methods: The biomedical literature and gene expression databases, PubMed and GEO, respectively, were searched following the PRISMA guidelines. The key inclusion criteria were gene expression data derived from case-control studies on MI patients from blood samples. Gene expression datasets regarding the effect of medicinal drugs on MI were excluded. The t-test was applied to gene expression data from case-control studies in MI patients. Results: A total of 162 articles and 174 gene expression datasets were retrieved. Of those a total of 4 gene expression datasets met the inclusion criteria, which contained data on 31,180 loci in 93 MI patients and 89 healthy individuals. Collectively, 626 differentially expressed genes were detected in MI patients as compared to non-affected individuals at an FDR q-value=0.01. Of those, 88 genes/gene products were interconnected in an interaction network. Totally, 15 genes were identified as hubs of the network. Conclusions: Functional enrichment analyses revealed that the DEGs and that they are mainly involved in inflammatory/wound healing, RNA processing/transport mechanisms and a yet not fully characterized pathway implicated in RNA transport and nuclear pore proteins. The overlap between the DEGs identified in this study and the genes identified through genetic-association studies is minimal. These data could be useful in future studies on the molecular mechanisms of MI as well as diagnostic and prognostic markers.
引用
收藏
页数:11
相关论文
共 62 条
[1]  
[Anonymous], 2013, Stata Statistical Software: Release 13
[2]  
Barrett Tanya, 2006, V338, P175
[3]  
Becker KG, 2004, NAT GENET, V36, P431, DOI 10.1038/ng0504-431
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome [J].
Blanchet, Xavier ;
Cesarek, Katja ;
Brandt, Johanna ;
Herwald, Heiko ;
Teupser, Daniel ;
Kuechenhoff, Helmut ;
Karshovska, Ela ;
Mause, Sebastian F. ;
Siess, Wolfgang ;
Wasmuth, Hermann ;
Soehnlein, Oliver ;
Koenen, Rory R. ;
Weber, Christian ;
von Hundelshausen, Philipp .
THROMBOSIS AND HAEMOSTASIS, 2014, 112 (06) :1277-1287
[6]   Cellular recruitment in myocardial ischaemia/reperfusion injury [J].
Bonaventura, Aldo ;
Montecucco, Fabrizio ;
Dallegri, Franco .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2016, 46 (06) :590-601
[7]   Comparison study of microarray meta-analysis methods [J].
Campain, Anna ;
Yang, Yee Hwa .
BMC BIOINFORMATICS, 2010, 11
[8]   Meta-analysis methods for combining multiple expression profiles: comparisons, statistical characterization and an application guideline [J].
Chang, Lun-Ching ;
Lin, Hui-Min ;
Sibille, Etienne ;
Tseng, George C. .
BMC BIOINFORMATICS, 2013, 14
[9]   Combining multiple microarray studies and modeling interstudy variation [J].
Choi, Jung Kyoon ;
Yu, Ungsik ;
Kim, Sangsoo ;
Yoo, Ook Joon .
BIOINFORMATICS, 2003, 19 :i84-i90
[10]   TAIL OF THE HYPERGEOMETRIC DISTRIBUTION [J].
CHVATAL, V .
DISCRETE MATHEMATICS, 1979, 25 (03) :285-287