Discovering Large Isotropic Negative Thermal Expansion in Framework Compound AgB(CN)4 via the Concept of Average Atomic Volume

被引:125
作者
Gao, Qilong [1 ,2 ,3 ]
Wang, Jiaqi [1 ]
Sanson, Andrea [4 ]
Sun, Qiang [1 ]
Liang, Erjun [1 ]
Xing, Xianran [5 ]
Chen, Jun [2 ,3 ]
机构
[1] Zhengzhou Univ, Sch Phys & Microelect, Int Lab Quantum Funct Mat Henan, Zhengzhou 450001, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[4] Univ Padua, Dept Phys & Astron, I-35131 Padua, Italy
[5] Univ Sci & Technol Beijing, Inst Solid State Chem, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
ZERO; PROPERTY; NI; COMPOSITES; LA(FE; MN; FE; SI; CO;
D O I
10.1021/jacs.0c02188
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Exploring isotropic negative thermal expansion (NTE) compounds is interesting, but remains challenging. Here, a new concept of "average atomic volume" is proposed to find new NTE open-framework materials. According to this guidance, two NTE compounds, AgB(CN)(4) and CuB(CN)(4), have been discovered, of which AgB(CN)(4) exhibits a large NTE over a wide temperature range (alpha(v) = -40 X 10(-6) K-1, 100-600 K). The analysis by extended X-ray absorption fine structure spectroscopy and first-principles calculation indicate that (i) the NTE driving force comes from the transverse vibrations of bridge chain atoms of C and N, corresponding to the low-frequency phonon modes; and (ii) the same transverse vibration direction of C and N atoms is a key factor for the occurrence of strong NTE in AgB(CN)(4). The present concept of "average atomic volume" can be a simple parameter to explore new NTE compounds especially in those open-framework materials.
引用
收藏
页码:6935 / 6939
页数:5
相关论文
共 38 条
[21]   Tetracyanoborate salts M[B(CN)4]with M = Singly charged cations:: Properties and structures [J].
Kuppers, T ;
Bernhardt, E ;
Willner, H ;
Rohm, HW ;
Köckerling, M .
INORGANIC CHEMISTRY, 2005, 44 (04) :1015-1022
[22]   The GaNMn3-Epoxy composites with tunable coefficient of thermal expansion and good dielectric performance [J].
Lin, Jianchao ;
Tong, Peng ;
Zhang, Kui ;
Ma, Xiaohang ;
Tong, Haiyun ;
Guo, Xinge ;
Yang, Cheng ;
Wu, Ying ;
Wang, Meng ;
Lin, Shuai ;
Song, Wenhai ;
Sun, Yuping .
COMPOSITES SCIENCE AND TECHNOLOGY, 2017, 146 :177-182
[23]   Negative thermal expansion in molecular materials [J].
Liu, Zhanning ;
Gao, Qilong ;
Chen, Jun ;
Deng, Jinxia ;
Lin, Kun ;
Xing, Xianran .
CHEMICAL COMMUNICATIONS, 2018, 54 (41) :5164-5176
[24]   Zero thermal expansion in a Prussian blue analogue [J].
Margadonna, S ;
Prassides, K ;
Fitch, AN .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (47) :15390-15391
[25]   Negative thermal expansion in Y2Mo3O12 [J].
Marinkovic, BA ;
Jardim, PM ;
de Avillez, RR ;
Rizzo, F .
SOLID STATE SCIENCES, 2005, 7 (11) :1377-1383
[26]   Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8 [J].
Mary, TA ;
Evans, JSO ;
Vogt, T ;
Sleight, AW .
SCIENCE, 1996, 272 (5258) :90-92
[27]   Suppression of temperature hysteresis in negative thermal expansion compound BiNi1-xFexO3 and zero-thermal expansion composite [J].
Nabetani, K. ;
Muramatsu, Y. ;
Oka, K. ;
Nakano, K. ;
Hojo, H. ;
Mizumaki, M. ;
Agui, A. ;
Higo, Y. ;
Hayashi, N. ;
Takano, M. ;
Azuma, M. .
APPLIED PHYSICS LETTERS, 2015, 106 (06)
[28]   On the switching between negative and positive thermal expansion in framework materials [J].
Sanson, Andrea .
MATERIALS RESEARCH LETTERS, 2019, 7 (10) :412-417
[30]   Preparation and property study of La(Fe, Si, Co)13/Cu composite with nearly zero thermal expansion behavior [J].
Shan, Xinran ;
Huang, Rongjin ;
Han, Yemao ;
Huang, Chuanjun ;
Li, Laifeng .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 648 :463-466