On Young's inequality

被引:19
作者
Alzer, Horst [1 ]
Kwong, Man Kam [2 ]
机构
[1] Morsbacher Str 10, D-51545 Waldbrol, Germany
[2] Hong Kong Polytech Univ, Dept Appl Math, Hunghom, Hong Kong, Peoples R China
关键词
Young's inequality; Trigonometric sums; Turin-type inequalities; Harmonic functions; Absolutely monotonic;
D O I
10.1016/j.jmaa.2018.06.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some inequalities for trigonometric sums. Among others, we prove the following refinements of the classical Young inequality. (1) Let m >= 3 be an odd integer, then for all n >= m - 1, Sigma(n)(k=1) cos(k theta)/k >= Sigma(m)(k=1)(-1)(k)/k. The sign of equality holds if and only if n = m and theta = pi. The special case m = 3 is due to Brown and Koumandos (1997). (2) For all even integers n >= 2 and real numbers r is an element of (0,1] and theta is an element of [0, pi] we have Sigma(n)(k=1) cos(k theta)/k r(k) >= -5/48 (5+root 5) = -0.75375.... The sign of equality holds if and only if n = 4, r = 1 and 0 = 4 pi/5. We apply this result to prove the absolute monotonicity of a function which is defined in terms of the log-function. (C) 2018 Published by Elsevier Inc.
引用
收藏
页码:480 / 492
页数:13
相关论文
共 11 条
[1]  
[Anonymous], COMBINATORIAL IDENTI
[2]  
Askey R., 1986, MATH SURVEYS MONOGRA, V21, P7
[3]  
Askey R., 1975, REG C SER APPL MATH, V21
[4]   Turan type inequalities for Kratzel functions [J].
Baricz, Arpad ;
Jankov, Dragana ;
Pogany, Tibor K. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) :716-724
[5]   BRANNAN'S CONJECTURE AND TRIGONOMETRIC SUMS [J].
Barnard, Roger W. ;
Jayatilake, Udaya C. ;
Solynin, Alexander Yu. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (05) :2117-2128
[6]   On a monotonic trigonometric sum [J].
Brown, G ;
Koumandos, S .
MONATSHEFTE FUR MATHEMATIK, 1997, 123 (02) :109-119
[7]  
Koumandos S., 2012, NONLINEAR ANAL, V68, P387
[8]  
Milovanovic G. V., 1994, Topics in Polynomials: Extremal Problems, Inequalities, Zeros
[9]  
van der Waerden B. L., 1971, Algebra, V1
[10]  
WIDDER D. V., 1941, Princeton Mathematical Series, V6