F-regularity;
F-signature;
finite torsors;
local Nori fundamental group-scheme;
SIMPLE LIE-ALGEBRAS;
INTEGRAL-EXTENSIONS;
LOCAL-RINGS;
SIGNATURE;
THEOREMS;
CLASSIFICATION;
BEHAVIOR;
COVERS;
IDEALS;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We investigate finite torsors over big opens of spectra of strongly F-regular germs that do not extend to torsors over the whole spectrum. Let (R, m, k, K) be a strongly F-regular k-germ where k is an algebraically closed field of characteristic p > 0. We prove the existence of a finite local cover R subset of R* so that R* is a strongly F-regular k-germ and: for all finite algebraic groups G/k with solvable neutral component, every G-torsor over a big open of SpecR* extends to a G-torsor everywhere. To achieve this, we obtain a generalized transformation rule for the F-signature under finite local extensions. Such formula is used to show that the torsion of C1 R is bounded by 1/s(R). By taking cones, we conclude that the Picard group of globally F-regular varieties is torsion-free. Likewise, this shows that canonical covers of Q-Gorenstein strongly F-regular singularities are strongly F-regular.
机构:
Univ Utah, Dept Math, 155 South 1400 East, Salt Lake City, UT 84112 USAUniv Utah, Dept Math, 155 South 1400 East, Salt Lake City, UT 84112 USA
Singh, Anurag K.
Takagi, Shunsuke
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Utah, Dept Math, 155 South 1400 East, Salt Lake City, UT 84112 USA
Takagi, Shunsuke
Varbaro, Matteo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, ItalyUniv Utah, Dept Math, 155 South 1400 East, Salt Lake City, UT 84112 USA
机构:
Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
Univ Costa Rica, Escuela Matemat, San Jose 11501, Costa RicaUniv Utah, Dept Math, Salt Lake City, UT 84112 USA
Carvajal-Rojas, Javier
Schwede, Karl
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utah, Dept Math, Salt Lake City, UT 84112 USAUniv Utah, Dept Math, Salt Lake City, UT 84112 USA
Schwede, Karl
Tucker, Kevin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math, Chicago, IL 60607 USAUniv Utah, Dept Math, Salt Lake City, UT 84112 USA
Tucker, Kevin
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE,
2018,
51
(04):
: 993
-
1016
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan