A comprehensive study of popular eigenvalue methods employed for quantum calculation of energy eigenstates in nanostructures using GPUs

被引:4
作者
Rodrigues, W. [1 ]
Pecchia, A. [2 ]
Maur, M. Auf der [1 ]
Di Carlo, A. [1 ]
机构
[1] Univ Roma Tor Vergata, Dept Elect Engn, I-00133 Rome, Italy
[2] CNR ISMN, I-00017 Monterotondo, Italy
关键词
Eigensolver; Lanczos; Jacobi-Davidson; FEAST; Tight-binding; Atomistic simulation; GPU; JACOBI-DAVIDSON; LINEAR-SYSTEMS; ALGORITHM; TRANSPORT;
D O I
10.1007/s10825-015-0695-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we concentrate on the graphics processing unit (GPU) implementation of three different methods that are common among peers in the electronic computational domain. We calculate the energy eigenstates of GaN/AlGaN quantum dots on GPU using the tight-binding approach with a + spin-orbit parametrization for structures ranging from 8039 atoms to 351,600 atoms corresponding to a Hamiltonian matrix size of around 160,780-7,032,000. We perform an analysis for timing, memory occupancy and convergence on a multi-GPU workstation and a high performance computing (HPC) cluster. We also present comparisons between the multi-GPU system having 4 Nvidia Kepler graphic cards and a HPC cluster where the algorithms are benchmarked on up to 256 CPU cores.
引用
收藏
页码:593 / 603
页数:11
相关论文
共 34 条
[31]  
San-Cheng C, 1986, COMPUT STRUCT, V23, P121, DOI [10.1016/0045-7949(86)90206-3, DOI 10.1016/0045-7949(86)90206-3]
[32]   Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems [J].
Sleijpen, GLG ;
Booten, AGL ;
Fokkema, DR ;
VanderVorst, HA .
BIT NUMERICAL MATHEMATICS, 1996, 36 (03) :595-633
[33]  
Sleijpen GLG, 1996, SIAM J MATRIX ANAL A, V17, P401, DOI [10.1137/S0895479894270427, 10.1137/S0036144599363084]
[34]  
Stewart G.W., 2001, MATRIX ALGORITHMS, VII, P306