Li-Yorke chaos in a class of nonautonomous discrete systems

被引:49
作者
Canovas, Jose S. [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Murcia 30202, Spain
关键词
nonautonomous difference equations; Li-Yorke chaos; entropy; OMEGA-LIMIT SETS; TOPOLOGICAL-ENTROPY; DYNAMICAL-SYSTEMS; CONTINUOUS-MAPS; INTERVAL;
D O I
10.1080/10236190903049025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f(1,infinity) = (f(n)) be a sequence of continuous interval maps which converges uniformly to a continuous map f. We study the limit behaviour of sequences with the form (fn circle ... circle f(1))(x), x is an element of [0, 1], and whether the simplicity (respectively chaoticity) of f implies the simplicity (respectively chaoticity) of f(1,infinity).
引用
收藏
页码:479 / 486
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 1964, Ukr. Mat. Zh
[2]  
Aoki N., 1994, Topological Theory of Dynamical Systems: Recent Advances
[3]  
BLOCK LS, 1992, LECT NOTES MATH, V1513
[4]  
Canovas J.S., 2004, GRAZER MATH BER, V346, P53
[5]   On ω-limit sets of non-autonomous discrete systems [J].
Cánovas, JS .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (01) :95-100
[6]   A simple proof of Sharkovsky's theorem [J].
Du, BS .
AMERICAN MATHEMATICAL MONTHLY, 2004, 111 (07) :595-599
[7]   Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures [J].
Elaydi, S ;
Rober, JS .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (4-5) :337-346
[8]   STRANGE TRIANGULAR MAPS OF THE SQUARE [J].
FORTI, GL ;
PAGANONI, L ;
SMITAL, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1995, 51 (03) :395-415
[9]   SHADOWING PROPERTY OF CONTINUOUS-MAPS [J].
GEDEON, T ;
KUCHTA, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (01) :271-281
[10]   A CHARACTERIZATION OF CHAOS [J].
JANKOVA, K ;
SMITAL, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 34 (02) :283-292