Machine Learning Approach for Predicting Metastatic Sitesof of Prostate Cancer

被引:0
作者
El Amsy, Tarik [1 ]
机构
[1] Al Univ Sci & Technol, Abu Dhabi, U Arab Emirates
来源
ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS | 2019年
关键词
Prostate cancer; survival; biomarker genes; machine learning; classification; clustering;
D O I
10.1145/3307339.3343477
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Analyzing Genomic profiles of prostate cancer patients with the similar metastatic site may unveil the progression mechanism of cancer and assist in the diagnose and the treatment of cancer. In this model, we propose a machine learning approach based on gene expression and copy number alterations for cohorts of prostate cancer with different metastatic sites.
引用
收藏
页码:626 / 626
页数:1
相关论文
共 4 条
[1]  
Alkhateeb A., 2019, CANCER INFORM
[2]   The long tail of oncogenic drivers in prostate cancer [J].
Armenia, Joshua ;
Wankowicz, Stephanie A. M. ;
Liu, David ;
Gao, Jianjiong ;
Kundra, Ritika ;
Reznik, Ed ;
Chatila, Walid K. ;
Chakravarty, Debyani ;
Han, G. Celine ;
Coleman, Ilsa ;
Montgomery, Bruce ;
Pritchard, Colin ;
Morrissey, Colm ;
Barbieri, Christopher E. ;
Beltran, Himisha ;
Sboner, Andrea ;
Zafeiriou, Zafeiris ;
Miranda, Susana ;
Bielski, Craig M. ;
Penson, Alexander V. ;
Tolonen, Charlotte ;
Huang, Franklin W. ;
Robinson, Dan ;
Wu, Yi Mi ;
Lonigro, Robert ;
Garraway, Levi A. ;
Demichelis, Francesca ;
Kantoff, Philip W. ;
Taplin, Mary-Ellen ;
Abida, Wassim ;
Taylor, Barry S. ;
Scher, Howard I. ;
Nelson, Peter S. ;
de Bono, Johann S. ;
Rubin, Mark A. ;
Sawyers, Charles L. ;
Chinnaiyan, Arul M. ;
Schultz, Nikolaus ;
Van Allen, Eliezer M. .
NATURE GENETICS, 2018, 50 (05) :645-+
[3]  
Hamze Hamze, 2018, INT C BIOINF BIOM EN, P343
[4]   Predicting the sites of metastases [J].
Ring, BZ ;
Ross, DT .
GENOME BIOLOGY, 2005, 6 (12)